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This article is about numerical methods for the solution of nonlinear equa-
tions. We consider both the fixed-point form x = G(x) and the equations
form F(x) = 0 and explain why both versions are necessary to understand the
solvers. We include the classical methods to make the presentation complete
and discuss less familiar topics such as Anderson acceleration, semi-smooth
Newton’s method, and pseudo-arclength and pseudo-transient continuation
methods.
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1. Introduction

Nonlinear equations are ubiquitous, and methods for their solution date
from the quadratic formula. Modern numerical methods are, for the most
part, based on Newton’s method or Picard iteration.

Most of the results in this paper, while stated and proved in a finite-
dimensional setting, do not depend on compactness of the unit ball and are
valid in a Banach space setting (see Section 2.9). We will explicitly point
out the few exceptions.

This subject is old (Newton 1967–1976, Raphson 1690, Picard 1890). Or-
tega and Rheinboldt (1970), Dennis and Schnabel (1996) and Kelley (1995)

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492917000113
Downloaded from https://www.cambridge.org/core. North Carolina State University, on 30 May 2018 at 20:08:09, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492917000113
https://www.cambridge.org/core


208 C. T. Kelley

are our primary sources for notation and analysis of the classical methods.
The bibliographies of these books vividly illustrate the rich classical liter-
ature in this field. The approach we take in this article is not the only one.
Deuflhard (2004), for example, has a somewhat different viewpoint.

We intend this article to be self-contained for any student of numerical
analysis. To that end we summarize the classical theory of Newton and
Newton-iterative methods in Section 2. The remaining sections have less
familiar material and could in many ways be thought of as a second volume
of Kelley (1995). The topics in Sections 5 and 6, in particular, are very
active areas of research.

1.1. Notation

We seek to solve nonlinear equations in RN . We will write vectors in bold-
face lower-case, maps on vectors in boldface upper-case, and components of
vectors as lower-case roman letters. For example, if x ∈ RN , xi is the ith
component of x. The methods are iterative, and we will denote the sequence
of iterations by {xn} when the entire sequence (or several elements of the
sequence) is of interest. In many cases only the current iteration xc and the
next one x+ are needed, and we can express the algorithm in terms of the
transition from xc to x+.

Two formulations of nonlinear equations are of interest in this article.

1.2. Root finding formulation and Newton’s method

The ‘root finding’ form is

F(x) = 0, (1.1)

where F : RN → RN ,

F(x) =


f1(x)
f2(x)

...
fN (x)

.
We will refer to F as the residual.

If F is differentiable at x, we will denote the Jacobian matrix by F′(x).
Recall that

F′(x)ij = ∂fi(x)/∂xj .

When we express an equation in this form we will be solving it with a
variation of Newton’s method. The classical version of Newton’s method
takes xc to x+ via

x+ = xc − F′(xc)
−1F(xc). (1.2)
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Numerical methods for nonlinear equations 209

Implicit in (1.2) is the solution of the linearized equation for the step s:

F′(xc)s = −F(xc). (1.3)

The various formulations of Newton’s method we consider in Section 2 differ
in the way they approximate a solution to (1.3). In Section 6 we show how
to relax the smoothness assumptions on F.

1.3. Fixed-point formulation and Picard iteration

The fixed-point formulation of a nonlinear equation is

x = G(x), (1.4)

where G : RN → RN . The two formulations are equivalent via F(x) =
x−G(x), of course, but the choice of formulation usually carries meaning.
In particular, the use of the fixed-point formulation will imply, at least in
this article, that derivative information is either not necessary or difficult
to obtain when designing the algorithms. Picard iteration (Picard 1890),

x+ = G(xc),

is the classic example of a method that does not use Jacobian information.
Picard iteration is also called fixed-point iteration, Richardson iteration or
successive substitution. Ortega and Rheinboldt (1970) make a distinction
between some of these terms, but we see no reason for that, and our usage
reflects common practice. Tapia, Dennis and Schäfermeyer (2018) have an
interesting historical perspective.

We will solve fixed-point problems with Picard iteration or one of its
variations.

We close this section with the well-known theory for Picard iteration.

Definition 1.1. A map G is a contraction on a closed set D ⊂ RN if

• G(x) ∈ D if x ∈ D,

• there is α ∈ (0, 1) such that

‖G(x)−G(y)‖ ≤ α‖x− y‖,
for all x,y ∈ D.

The convergence result is the contraction mapping theorem.

Theorem 1.2. If G is a contraction on a closed set D ⊂ RN , then

• there is a unique solution x∗ ∈ D to x = G(x),

• if x0 ∈ D then the Picard iteration converges to x∗.

We refer to Ortega and Rheinboldt (1970) and Kelley (1995) for the fa-
miliar proof. We will discuss an important extension of Picard iteration in
Section 5.
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210 C. T. Kelley

2. Newton’s method: classical algorithms

For most of this section we will make the so-called standard assumptions
on the nonlinear equation F(x) = 0.

Assumption 2.1. There are x∗ ∈ RN and ρ∗ > 0 such that

• F(x∗) = 0,

• F′(x∗) is non-singular, and

• F′(x) is Lipschitz continuous with Lipschitz constant γ, that is,

‖F′(x)− F′(y)‖ ≤ γ‖x− y‖, (2.1)

for all

x,y ∈ B(x∗, ρ∗) ≡ {z | ‖z− x∗‖ ≤ ρ∗}.

The standard assumptions distinguish the root x∗ of F from any oth-
ers and the local convergence theory refers only to that root. When non-
uniqueness is an issue (see Sections 4 and 7), then the standard assumptions
only play a role after a particular root has been identified.

In this section we will analyse the convergence of Newton’s method twice:
once for the simple formulation and again to account for errors in the evalu-
ation of F and in the solution of the linearized problem for the step. The lat-
ter of the two results, Theorem 2.3, serves to explain not only many classical
variations of Newton’s method but also the modern Jacobian-free Newton–
Krylov (JFNK) methods (Knoll and Keyes 2004) that are the basis of large-
scale nonlinear solvers such as KINSOL (Collier, Hindmarsh, Serban and
Woodward 2015), NOX (Heroux et al. 2005) and SNES (Balay et al. 2015).

2.1. Local convergence of Newton’s method

The reader may know Theorem 2.2 well. The simple statement is that if
the standard assumptions hold and the initial iterate1 is sufficiently near x∗

(hence the term local), then the Newton iteration {xn} exists (i.e. F′(xn) is
non-singular for all n ≥ 0) and converges quadratically to x∗. The Newton
iterates are, of course,

xn+1 = xn − F(xn)−1F(xn),

for n ≥ 0. This is exactly (1.2) with xc replaced by xn and x+ by xn+1. The
advantage of the xc and x+ notation is that the transition from xc to x+ is
central and the iteration counter is generally irrelevant to the convergence
analysis. Quadratic convergence means that

‖e+‖ = O(‖ec‖2), (2.2)

1 Not guess! We are professionals here.
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Numerical methods for nonlinear equations 211

where the error in x is e = x − x∗. Quadratic convergence says that the
number of significant figures in the result roughly doubles with each itera-
tion.

We will begin with a precise statement of this result which will, among
other things, exhibit the constant in the O-term. We will also begin to de-
velop a taxonomy of convergence types. We say that xn → x∗ q-quadratically
if (2.2) holds and r-quadratically if there is a real sequence {ξn} which con-
verges q-quadratically to 0 such that ‖en‖ ≤ ξn. We say the convergence
is q-linear if there is α ∈ [0, 1) such that ‖en+1‖ ≤ α‖en‖ for n sufficiently
large; α is called the q-factor. The convergence is q-superlinear if

lim
n→∞

‖en+1‖
‖en‖

= 0.

Finally, we will quantify ‘sufficiently near x∗’. At a minimum, all the
local convergence results in this section require

‖x− x∗‖ ≤ min

(
‖F′(x∗)−1‖−1

2γ
, ρ∗
)
, (2.3)

where γ is the Lipschitz constant for F′ and ρ∗ is the radius of the ball
about x∗ in which the Lipschitz continuity assumption on F′ holds.

2.2. Classical Newton’s method

We will prove Theorem 2.2 in detail. Not only is the proof illuminating in
its own right, but some of the details lead to algorithmic insights.

Theorem 2.2. Let Assumption 2.1 hold and assume that xc satisfies
(2.3). Then F(xc) is non-singular,

‖F′(xc)‖−1 ≤ 2‖F′(x∗)‖−1, (2.4)

and

‖e+‖ ≤ ‖F′(x∗)−1‖γ ‖ec‖2 ≤ ‖ec‖/2. (2.5)

Proof. The standard assumptions and (2.3) imply that

‖F′(xc)− F′(x∗)‖ ≤ γ‖ec‖ ≤
‖F′(x∗)−1‖

2
,

and hence

‖I− F′(x∗)−1F′(xc)‖ ≤ ‖F′(x∗)−1‖‖F′(xc)− F′(x∗)‖ ≤ 1/2,

so F′(x∗)−1 is an approximate inverse of F′(xc), and

‖F′(xc)−1‖ ≤
‖F′(x∗)−1‖

2
,

as asserted.
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212 C. T. Kelley

The remainder of the proof follows from the fundamental theorem of
calculus, which implies that

F(xc) =

∫ 1

0
F′(x∗ + tec)ec dt

= F′(xc)ec +

∫ 1

0
(F′(x∗ + tec)− F′(xc))ec dt. (2.6)

Hence,

e+ = ec − F′(xc)
−1
(

F′(xc)ec +

∫ 1

0
(F′(x∗ + tec)− F′(xc))ec dt

)
= −F′(xc)

−1
(∫ 1

0
(F′(x∗ + tec)− F′(xc))ec dt

)
.

Note that∥∥∥∥∫ 1

0
(F′(x∗ + tec)− F′(xc))ec dt

∥∥∥∥ ≤ ∫ 1

0
γ‖ec‖2(1− t) dt = γ‖ec‖2/2.

Hence,

‖e+‖ ≤
‖F′(xc)−1‖γ

2
‖ec‖2 ≤

2‖F′(x∗)−1‖γ
2

‖ec‖2

≤ ‖ec‖/2. (2.7)

This completes the proof and shows that the constant in the O-term for
quadratic convergence is no larger than ‖F′(x∗)−1‖γ.

Our bounds for the distance of the initial iterate from the root and for
the convergence rate depend only on the norm of the inverse of the Jac-
obian at the root and the Lipschitz constant of the Jacobian near the
root. This observation leads directly to the Kantorovich theorem (Kan-
torovich and Akilov 1982: see Section 3) and the implicit function theorem
(Keller 1987) in Section 4, which are the basis for the pseudo-arclength
continuation method we discuss in Section 4.

2.3. Termination criteria

The only obvious ways to terminate the Newton iteration are to examine
the norm of the residual ‖F(xn)‖ or the norm of the step ‖xn+1 − xn‖.
Either way is fine if one computes the Newton step exactly.

The norm of the step is a very good surrogate for the norm of the error at
the previous iteration. To see this, note that quadratic convergence implies
that

xn+1 − xn = en+1 − en = −en +O(‖en‖2).
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Numerical methods for nonlinear equations 213

So, as the iteration converges, the norm of the step is asymptotically equal
to the norm of the previous error. Suppose, for example, one wishes to
terminate the iteration when ‖en‖ ≤ τ . One could very safely stop the iter-
ation when ‖xn+1−xn‖ ≤ τ and return xn+1 as the solution. Alternatively,
one could terminate the iteration when ‖xn − xn−1‖ ≤ α

√
τ , where α is a

small constant. Then quadratic convergence would imply that

‖en‖ = O(α2τ),

which would suffice if α were small enough to balance the constant in the
O-term.

If the iteration converges q-superlinearly, then

‖s‖ = ‖x+ − xc‖ = ‖ec‖+ o(‖ec‖)

and the step is still an excellent surrogate for the error in the previous
iteration, but one has less information than in the quadratically convergent
case and cannot use ‖s‖ to estimate ‖en+1‖. One can apply similar logic if
one has an accurate upper bound for the q-factor in a q-linearly convergent
iteration. If one knows that

‖e+‖ ≤ α‖ec‖,

then

(1− α)‖ec‖ ≤ ‖s‖.

From this we can recover an estimate for the error in terms of the step,

‖e+‖ ≤ α‖ec‖ ≤
α

1− α
‖s‖.

See Petzold (1983) or Ascher and Petzold (1998) for examples of how this
can be used in an initial value problem integration, and Tocci, Kelley and
Miller (1997) for an example of the limitations of this idea.

The relation of the residual norm to the norm of the error is very similar
to that for the linear case. In the linear case the equation is Ax = b, the
residual is r = b−Ax, and the error is e = x−A−1b. The standard result is

κ(A)−1
‖r‖
‖b‖

≤ ‖e‖
‖A−1b‖

≤ κ(A)
‖r‖
‖b‖

(Kelley 1995, Demmel 1997, Golub and Van Loan 1996). This familiar
estimate compares the residual at x to the residual at the zero vector. In
the nonlinear case it is not generally useful to use the zero vector as a
reference, so we will use the initial iterate x0 instead.
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214 C. T. Kelley

Suppose the standard assumptions hold and x0 and x both satisfy (2.3).
Then, using the fundamental theorem of calculus, as we did in (2.6),

F(x) =

∫ 1

0
F′(x∗ + te)e dt

= F′(x∗)e +

∫ 1

0
(F′(x∗ + te)− F′(x∗))e dt. (2.8)

Therefore, using (2.3),

‖F(x)‖ ≤ ‖F′(x∗)e‖+ γ‖e‖2/2,

≤ ‖F′(x∗)e‖+ ‖F′(x∗)−1‖−1‖e‖/4 ≤ 5

4
‖F′(x∗)e‖.

Similarly

‖F(x)‖ ≥ 3

4
‖F(x∗)e‖,

and the same inequalities hold for x0. Hence

3

5
κ(F′(x∗))−1

‖e‖
‖e0‖

≤ ‖F(x)‖
‖F(x0)‖

≤ 5

3
κ(F′(x∗))

‖e‖
‖e0‖

. (2.9)

There is nothing magic about the numbers 3/5 and 5/3. Both are artifacts
of the fraction 1/2 in (2.3). As x and x0 approach x∗, both coefficients will
approach 1. So, the inequality (2.9) is satisfyingly consistent with the linear
case (where γ = 0 and ρ∗ =∞, so any x satisfies (2.3)).

Most implementations of Newton’s method do not attempt to compute
the step with high accuracy, as we will see in the following sections. Instead
one accepts low accuracy in the Jacobian, the linear solve for the step, or
even the residual itself. In these cases it is usually unwise to terminate on
small steps, and one must terminate on small residuals and accept the effects
of ill-conditioning. In the descriptions of algorithms, we will terminate when

‖F(x)‖ ≤ τa + τr‖F(x0)‖. (2.10)

2.4. Implementation: LU factorization of F′

The outline of a Newton iteration is simple. One evaluates the residual,
computes the step, and continues until a termination criterion is satisfied.
A broad outline of the Newton iteration is shown in algorithm newton.

newton(x,F)

Evaluate F(x); terminate?
Solve F′(x)s = −F(x)
x← x + s
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Numerical methods for nonlinear equations 215

Algorithm newton leaves out all the important details. We will generally
terminate the Newton iteration when the residual norm is small using (2.10).
However, that alone is not enough. One must limit the number of iterations
to avoid an infinite loop when, for example, the equation has no solution.
One must also decide how to solve the linear equation for the step. If the
Jacobian F′ is small, dense and unstructured, the natural implementation
of algorithm newton is to use Gaussian elimination and compute an LU
factorization of F′. The resulting algorithm, newton LU, is now quite
specific and the reader should be able to implement it easily.

newton LU(x,F, τa, τr,maxit)

itc = 0
evaluate F(x); τ ← τr‖F(x)‖+ τa.
while ‖F(x)‖ > τ and itc < maxit do

compute F′(x); factor F′(x) = LU
solve LUs = −F(x)
x← x + s
evaluate F(x)
itc← itc+ 1

end while

Algorithm newton LU works well and is widely used. However, there
is more to consider. One important matter is how one computes F′. The
best way, if one can do it, is to compute the Jacobian analytically. Analytic
Jacobians are usually less expensive computationally and avoid any possible
problems with differencing. Computing analytic Jacobians is not possible
in a general-purpose code, however, and a typical approach is to compute
F′ with a forward difference. One way to do this is to approximate the jth
column of F′(x) with the difference

F(x + huj)− F(x)

h
, (2.11)

where uj is the unit vector in the jth coordinate direction. A finite-differ-
ence Jacobian ∇hF(x), therefore, has an O(h) error. The computational
cost is N additional function evaluations, one for each direction. If the cost
of an evaluation of F is O(N2), as it would be for a linear equation, then
the cost of computing the finite-difference Jacobian is O(N3), which is the
same order as LU factorization. Hence, the construction and factorization
of the Jacobian can dominate the cost of the solve. We will show later
that analytic Jacobians and finite-difference Jacobians usually produce very
similar Newton iterations. The difference is in the expense of computing the
finite-difference Jacobian. If the Jacobian is sparse, there are ways to do the
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216 C. T. Kelley

differencing much more efficiently. Curtis, Powell and Reid (1974) describe
one such method.

The chord method modifies the Newton iteration by moving the Jacobian
evaluation and factorization out of the loop. The coefficient matrix in the
linear equation for the step is F(x0) for every nonlinear iteration. For
example, algorithm newton LU becomes an implementation of the chord
method by moving one line, shown as algorithm chord LU.

chord LU(x,F, τa, τr,maxit)

itc = 0
evaluate F(x); τ ← τr‖F(x)‖+ τa.
compute F′(x); factor F′(x) = LU
while ‖F(x)‖ > τ and itc < maxit do

solve LUs = −F(x)
x← x + s
evaluate F(x)
itc← itc+ 1

end while

The chord iteration is

x+ = xc − F′(x0)
−1F(xc),

so one has simply replaced the Jacobian at the current point with an ap-
proximation. The error in that approximation is

‖F′(xc)− F′(x0)‖ ≤ γ‖xc − x0‖ = γ‖ec − e0‖.

One can prove local convergence with the standard assumptions if the initial
iterate is sufficiently near x∗. However, (2.3) may not be good enough.
The next section looks at a longer list of approximations one can apply to
Newton’s method and their effects on the iteration.

2.5. Errors in F and F′

Suppose one approximates Newton’s method by

x+ = xc + s,

where

‖Jcs + (F(xc) + ε(xc))‖ ≤ ηc‖F(xc) + ε(xc)‖ (2.12)

and

‖Jc − F′(xc)‖ ≤ ∆c. (2.13)

We allow for errors in every possible way in this approximation. The evalu-
ation of F has an error ε. We have an approximate Jacobian J for the linear
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Numerical methods for nonlinear equations 217

equation for the Newton step. Finally, we do not even solve that incorrect
equation for the step exactly, rather we take a step s which satisfies the
inexact Newton condition

‖Jcs + F(xc) + ε(xc)‖ ≤ ηc‖F(xc) + ε(xc)‖ (2.14)

(Dembo, Eisenstat and Steihaug 1982). One way to interpret the inexact
Newton condition is as the termination criterion for an iterative linear solver
(small relative residuals).

One should expect the iteration to converge if the standard assumptions
hold and the errors are sufficiently small. Theorem 2.3 (Kelley 1995) quan-
tifies that.

Theorem 2.3. Let Assumption 2.1, (2.3), and (2.14) hold. Then

‖e+‖ = O(‖ec‖2 + (‖ηc‖+ ∆c)‖ec‖+ ‖ε(xc)‖). (2.15)

Theorem 2.3 is very satisfying and explains most of the algorithms used
in practice. We will now apply (2.15) to several examples.

For the chord method, ε = 0, η = 0 and J = F′(x0). Hence

∆c = ‖F′(x0)− F′(xc)‖ ≤ γ‖x0 − xc‖ ≤ γ(‖e0‖+ ‖ec‖).

If (2.3) holds, then ‖e1‖ ≤ ‖e0‖/2, because the first chord iteration is a
Newton iteration. However, one needs a better initial iterate to compensate
for the error in the Jacobian. If the initial iterate is sufficiently good, then

‖en+1‖ = O(‖en‖2 + ‖e0‖‖en‖) = O(‖e0‖‖en‖) < ‖en‖.

Hence, the convergence of the chord method is not q-quadratic, but rather
q-linear, with a q-factor proportional to ‖e0‖.

Theorem 2.3 is also the tool one needs to understand the effects of ap-
proximating the Jacobian with finite differences. For this we will assume
that ε is independent of x, η = 0, and the error in the Jacobian is first-order
in the difference increment. The statement

‖∇hF(x)− F′(x)‖ = O(h)

hides the prefactor of γ/2 in the O-term. If γ, the Lipschitz constant of F′,
is not too large, then a finite-difference Jacobian can be used safely. Most
of the time this approximation is fine, but there are exceptions (Kerkhoven
and Jerome 1990, Coughran and Jerome 1990).

Theorem 2.3 tells us that in this case

‖e+‖ = O(‖ec‖2 + h‖ec‖+ ‖ε‖).

The estimate implies that we cannot hope to reduce ‖e‖ to any less than
‖ε‖ and that the error terms balance when h = O(

√
‖ε‖) (which is a stand-

ard lesson in numerical analysis about finite-difference derivatives: Kelley
1995). The more subtle message in the estimate is that if h = O(

√
‖ε‖),
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218 C. T. Kelley

the iteration is indistinguishable from the Newton iteration with an exact
derivative until ‖e‖ ≈

√
‖ε‖.

As a final example, we will consider the secant method for scalar equations
(i.e. equations for one variable) f(x) = 0. Here the model derivative is

jc =
f(xc)− f(x−)

xc − x−
,

where x− is the iterate before xc. One must, of course, decide what x−1
should be. One good choice is 1.01×x0, which we will use in the examples.
Similarly to the analysis of the chord method, we have

|jc − f ′(xc)| = O(|ec|+ |e−|).

Theorem 2.3 with ε = 0 and η = 0 says that if |ec| ≤ |e−| are sufficiently
small,

|e+| = O(|ec||e−|). (2.16)

So, if the initial iterations are sufficiently good, the secant iteration con-
verges and |en+1| = O(|en||en−1|), which implies that the convergence is
q-superlinear, that is,

lim
n→∞

|en+1|
|en|

= 0. (2.17)

The secant method is limited to scalar equations. In fact, the secant method
converges q-superlinearly with q-order α = (1 +

√
5)/2, that is,

|e+| = O(|ec|α).

The quasi-Newton methods, which we discuss in Section 2.8, extend the
secant method to systems of equations. Scalar equations are no longer an
active topic of research, but at one time there was considerable activity
(Traub 1964). We will have very little to say about them in this article
aside from a few examples.

We can illustrate these results with a simple example. The residual for
the scalar equation

f(x) = x− e−x cos(x) = 0

can be evaluated to about 15 figures of accuracy. The Newton iteration is

x+ = xc − f(xc)/(1 + e−xc(sin(xc) + cos(xc))).

Using the initial iterate x0 = 1, we compare the iteration histories of New-
ton’s method, Newton’s method with a forward difference derivative, and
the chord method. We will use both a table and a plot, and invite the reader
to pick her or his own favourite way to present such data.

To illustrate the effects of the error in f , we tabulate and plot |f | for the
three methods. We set the termination criteria to τa = τr = 10−20. Since
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Table 2.1. Iteration histories: |f(xn)|.

n Newton FD Newton Chord Secant

0 8.0123×10−1 8.0123×10−1 8.0123×10−1 8.0123×10−1

1 8.9455×10−2 8.9455×10−2 8.9455×10−2 9.1464×10−2

2 6.7756×10−4 6.7756×10−4 1.8716×10−2 8.1187×10−3

3 4.1187×10−8 4.1175×10−8 3.7460×10−3 6.4885×10−5

4 1.1102×10−16 5.5511×10−16 7.5704×10−4 4.7404×10−8

5 2.2204×10−16 1.1102×10−16 1.5270×10−4 2.7611×10−13

6 1.1102×10−16 2.2204×10−16 3.0813×10−5 1.1102×10−16

7 2.2204×10−16 1.1102×10−16 6.2172×10−6 2.2204×10−16

8 1.1102×10−16 2.2204×10−16 1.2545×10−6 1.1102×10−16

9 2.2204×10−16 1.1102×10−16 2.5312×10−7 1.1102×10−16

10 1.1102×10−16 2.2204×10−16 5.1072×10−8 NaN

ε ≈ 10−15 in this example, the theory does not imply that it is possible to
drive the residual to a value as small as 10−20, and the computation confirms
that. We used a difference increment of h = 10−7.

Those of you accustomed to looking at columns of figures may have no-
ticed that, as the theory predicts, there is very little difference between the
finite-difference Newton method and the version with analytic derivatives
until the iteration stagnates at roughly the level of machine precision. One
can also notice that the residuals for the chord method decay more slowly,
by a factor of 4–5 with each iteration. The secant method converges faster
than chord, but not as fast as Newton’s method. One weakness of the
secant method is exposed by the 10th iteration, where there is a floating-
point exception. The problem is that the f(xn) = f(xn+1) and xn = xn+1

at this point, so one gets jc = 0/0, which is reported in IEEE arithmetic
(Overton 2001) as NaN (Not a Number). In this example we have run
the iteration far beyond any sensible termination point. The NaN and the
stagnation in the Newton iteration are signs of that.

It is more illuminating, at least in the author’s opinion, to visualize iter-
ation histories, and Table 2.1 is one of the very few tables we will use for
that. In Figure 2.1 we visualize the data from the table in a semi-log plot.
It is very clear that there is little difference between the two realizations of
Newton’s method in terms of the number of nonlinear iterations needed to
converge to the limiting level of precision. One can also see the signature of
superlinear convergence in downward concavity of the residual history for
Newton’s method and the secant method. The NaN is missing from the
plot by convention. The q-linear convergence of the chord method appears
as a linear residual history when plotted in this way.
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Figure 2.1. Visual iteration histories.

As a general rule, if residuals are accurate to machine unit roundoff, the
iterations will stagnate at that level. There are exceptions. For example, if
the floating-point implementation of a function has a root in the floating-
point number system, then one can continue the iteration for much longer.
The equation arctan(x) = 0 is an example of this phenomenon.

Our final example in this section is the Shamanskii method (Shamanskii
1967). This method is a hybrid between Newton’s method and the chord
method. The idea is to update the Jacobian every m ≥ 1 iterations. Clearly
m = 1 is Newton’s method and m = ∞ is the chord method. If Gaussian
elimination is the linear solver, the Shamanskii iteration for finite m is
shamanskii LU.

In algorithm shamanskii LU the iteration counter is incremented out-
side of the inner j loop. Keeping this in mind, Theorem 2.3 states that

‖en+1‖ = O(‖en‖m+1). (2.18)

If m > 1 the convergence rate is faster than the q-quadratic rate for New-
ton’s method. We say the convergence is q-superlinear with q-order m+ 1.
The Shamanskii method is less appealing than it appears because if the
Jacobian is sufficiently near F′(x∗) the modest reduction in the iterations is
not worth the cost of computing and factoring the Jacobian. In many cases
m =∞ (the chord method) is a better choice (Brent 1973).

This section has looked at the effects of ∆ and ε on the convergence of
Newton’s method. Typically proofs set ε = 0 and proceed as if evaluations F
were exact. The users of the results generally know that ε 6= 0 and when the
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shamanskii LU(x,F, τa, τr,maxit)

itc = 0
evaluate F(x); τ ← τr‖F(x)‖+ τa.
while ‖F(x)‖ > τ and itc < maxit do

compute F′(x); factor F′(x) = LU
y = x
for j = 1 : m do

solve LUs = −F(y)
x← y + s
evaluate F(y)

end for
x = y
itc← itc+ 1

end while

error in the function evaluation is important. We will follow that approach
in the next section, where the inexactness in the linear solver, measured by
η, is the important part of the algorithm.

2.6. Inexact Newton methods and JFNK

When one solves a linear equation Ax = b with an iterative method, one
usually terminates the iteration when the relative residual ‖Ax−b‖/‖b‖ is
sufficiently small. An inexact Newton method (Dembo et al. 1982) approx-
imates Newton’s method by using a step s that satisfies the inexact Newton
condition

‖F′(xc)s + F(xc)‖ ≤ ηc‖F(xc)‖. (2.19)

Here η is called the forcing term.
While the theory does not say how one realizes (2.19), in practice it is

usually the outcome of an iterative method for solving F′(xc)x = −F(xc).
The term Newton-iterative method is used in that case. The iteration for x
is called the outer or nonlinear iteration. The iterative method for the linear
equation is called the inner or linear iteration. A specific linear solver or
class of solvers is often specified. For example Newton–Krylov and Newton–
GMRES are common choices. Preconditioners can also be part of the name.
Newton–Krylov–Schwarz (Cai, Gropp, Keyes and Tidriri 1994) methods use
a Krylov linear solver and a Schwarz domain decomposition method as a
preconditioner.

A straightforward application of Theorem 2.3 with ∆ = 0 and ε = 0 leads
to

‖e+‖ = O(‖ec‖2 + ηc‖ec‖). (2.20)

The estimate (2.20) leads to a convergence theorem.
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222 C. T. Kelley

Theorem 2.4. Let Assumption 2.1 hold. Then if x0 is sufficiently near x∗,
0 ≤ ηn ≤ η̄ < 1, and η̄ is sufficiently small, then inexact Newton iteration
converges. Moreover, the convergence is

• q-linear,

• q-superlinear if ηn → 0, and

• q-quadratic if ηn = O(‖F(xn)‖).

There are, as one might suspect from Theorem 2.4, many approaches to
managing η as the iteration progresses. Similar to the distinction between
Newton’s method and the chord method, it is rarely a good idea to make
η very small, especially at the beginning of the iteration when only limited
accuracy is needed to get the same reduction in error that one would get with
Newton’s method itself. While one could make η small once the residuals
are small, it is not clear that the additional cost in the linear solve makes the
reduction in nonlinear iterations worthwhile. There are useful discussions
of this issue in Kelley (1995) and Eisenstat and Walker (1996). The author
of this article has had success with ηn ≡ 1/10.

Theorem 2.4 does not specify any particular norm. If one uses the weighed
norm

‖x‖∗ = ‖F′(x∗)x‖,

then the theory no longer needs a small η̄. Any η̄ < 1 will do.

Theorem 2.5. Let Assumption 2.1 hold. Then if x0 is sufficiently near
x∗ and 0 ≤ ηn ≤ η̄ < η̃ < 1,

‖en+1‖∗ ≤ η̃‖en‖∗
and the other conclusions of Theorem 2.4 hold.

Assuming that en 6= 0 for all n, Theorem 2.5 implies that

lim sup
‖en+1‖∗
‖en‖∗

≤ η̄.

If the linear solver is a Krylov method which only needs Jacobian-vector
products, it is not necessary or desirable to compute and store a Jacobian
matrix. For example, one can approximate the Jacobian-vector product
with a forward difference. Methods of this type are called Jacobian-free
Newton–Krylov (JFNK) methods. JFNK methods are the most common
choice for those large-scale nonlinear equations which come from differential
and integral equations. Knoll and Keyes (2004) provide an excellent account
of JNFK methods and applications.

The linear solver in a JFNK method often requires preconditioning to
work well enough to be useful. In most implementations preconditioning is
done at the level of the linear solver. Preconditioning can also be encoded
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in the nonlinear map itself and it is interesting to examine that. We will let
M be the preconditioner for the linear equation for the Newton step, and
assume that M does not depend on the x, the nonlinear iteration. If we
precondition from the left, the equation for the Newton step is transformed
into

MF′(xc)s = −MF(xc).

This is exactly the Newton step for the equation

MF(x) = 0.

So, in the case of left preconditioning, one can place the preconditioning
in the definition of the nonlinear map, replacing F by MF, or apply it to
the linear equation for the step. In either case, the steps and the iterations
will be the same as in the unpreconditioned case. Most of the production
codes put the preconditioning in the linear solve and measure the unprecon-
ditioned residual F when terminating the linear iteration. When one does
this, however, the termination criterion for the linear iteration would be

‖MF′(xc)s + MF(xc)‖ ≤ η‖MF(xc)‖,

which is the inexact Newton condition for MF. This does not change the
theory if η is sufficiently small. To summarize, replacing F with MF does
not change the iteration or the steps, but does change the norm of the
Jacobian at the solution and the Lipschitz constant for the Jacobian.

Similarly, if one preconditions the linear equation from the right, the
equation is

F′(xc)Mz = −F(xc), s = Mz,

and the corresponding nonlinear system is

F(My) = 0, x = My.

In this case the residuals are unchanged and the inexact Newton condition
has its original meaning if one puts the preconditioning in the linear solver.

2.7. Global convergence

The Newton iteration for arctan(x) = 0 with x0 = 1 exhibits classic quad-
ratic convergence. With a poor initial iterate, x0 = 10 for example, the first
five iterations are

10, −138, 2.9× 104, −1.5× 109, 9.9× 1017.

This divergence is consistent with the theory because the initial iterate is
so poor. The Armijo line search (Armijo 1966) is a wonderful and simple
solution to this problem.
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Figure 2.2. The Armijo line search for arctan(x) = 0, x0 = 10.

The idea is to observe that even though the Newton step moves farther
from the root, the direction is correct. To clarify this we make a distinction
between the Newton direction

d = −F′(xc)
−1F(xc)

and the Newton step

s = x+ − xc.

The simplest strategy is to find the least λ = 2−m for m = 0, 1, . . . so that

‖F(xc + λd)‖ < ‖F(xc)‖ (2.21)

and use s = λd. The simple decrease condition (2.21) is a bit too weak for
a convergence analysis, but is close enough to save the arctan iteration, as
one can see in Figure 2.2.

In the figure the circles are iterations for which the step length required
reduction, and the number of stepsize reductions are indicated next to the
circles. After the fourth iteration the iteration took full steps, and the local
theory holds. Note that the residual reduction continued past the resolu-
tion of the floating-point system. The reason for this, as we mentioned in
Section 2.5, is that x∗ = 0 is also a solution of the equation as implemented
in MATLAB with IEEE floating-point arithmetic.

Convergence theory requires more than simple decrease as in (2.21). The
sufficient decrease condition that one needs for theory is

‖F(xc + 2−md)‖ < (1− α2−m)‖F(xc)‖. (2.22)
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In most of the literature and codes, α = 10−4. In most cases sufficient
decrease conditions such as (2.22) will lead to the same stepsize decisions
as simple decrease, and the purpose is to enable theory. It is common
to adaptively change the stepsize reduction factor. One way to do this
(Kelley 1995, Dennis and Schnabel 1996) is to begin with a stepsize of
λ = 1, and with each failure of the sufficient decrease condition

‖F(xc + λd)‖ < (1− αλ)‖F(xc)‖, (2.23)

reduce λ by a factor σ ∈ [0.1, 0.5]. The standard way to do this is to
use this history of failed steps to generate a polynomial approximation of
φ(λ) = ‖F(xc+λd)‖ and minimize that polynomial. This adaptivity is very
useful in practice.

Algorithm newton armijo is an inexact formulation of the Newton–
Armijo method. It includes the essential ideas and makes the theory easy
to state. It is critical that one uses F′(x) and not an approximation.
The Armijo rule is not, for example, theoretically supported for the chord
method. Adding a line search to a Newton code is easy and requires only a
few new lines.

newton armijo(x,F, τa, τr)

evaluate F(x); τ ← τr|F(x)|+ τa.
while ‖F(x)‖ > τ do

Find d such that ‖F′(x)d + F(x)‖ ≤ η‖F(x)‖
If no such d can be found, terminate with failure.
λ = 1
while ‖F(x + λd)‖ > (1− αλ)‖F(x)‖ do
λ ← σλ where σ ∈ [1/10, 1/2] is computed by minimizing a poly-
nomial model of ‖F(x + λd)‖2.

end while
x← x + λd

end while

Algorithm newton armijo does not say how or if the forcing term η
changes with the iteration. Most of the codes do vary η and use the ideas
in Eisenstat and Walker (1996). One example from Eisenstat and Walker
(1996) which is common is

ηn =

{
ηmax n = 0,

min(ηmax, η
A
n ) n > 0.

(2.24)

Here

ηAn = γη‖F (xn)‖2/‖F (xn−1)‖2
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226 C. T. Kelley

and γη is a parameter. The parameter ηmax is an upper limit on the sequence
{ηn}. Eisenstat and Walker (1996) use the choices γη = 0.9 and ηmax =
0.9999. The author of this article, however, likes the choice ηn ≡ 0.1.

Theorem 2.6 is very satisfying. For sufficiently smooth problems, the
Newton–Armijo iteration has only three possible outcomes. One is conver-
gence to a solution which satisfies the standard assumptions. In that case
the stepsize λ will be one in the terminal phase of the iteration. The other
two outcomes are failures, which are easy to detect numerically. One fail-
ure mode is that the iteration becomes unbounded. An example of such a
problem is the scalar equation ex = 0, where the Newton–Armijo iteration
diverges to −∞. The second failure mode is that the Jacobian drifts to
singularity. An example is the scalar equation x2 + 1 = 0.

Theorem 2.6. Suppose F is Lipschitz continuously differentiable, {xn} is
the inexact Newton–Armijo sequence, and 0 < ηn < η̄ < 1. Then there are
only three possibilities.

• {xn} converges to a root x∗ of F at which the standard assumptions
hold, full steps (λ = 1) are taken for n sufficiently large, and the local
convergence theory holds.

• The sequence {xn} is unbounded.

• The sequence {F′(xn)−1} is unbounded.

The Newton–Armijo method does not solve all problems. Even in the
successful case, there is no guarantee that the iteration converges to a useful
solution. Nonlinear equations can have multiple solutions, and there are
often constraints such as dynamic stability or correct signs for physical
quantities to which the Newton iteration is oblivious. We will consider a
few ways to address non-uniqueness in Sections 4 and 7.

Another approach to globalization is that of trust region methods (Powell
1970). These methods are widely used in optimization (Conn, Gould and
Toint 2000), but less so for nonlinear equations. The idea is to model
‖F(xc)‖22 with a quadratic and minimize that quadratic in a bounded set,
the trust region, centred at xc. We will not discuss these methods in detail
here. Absil, Baker and Gallivan (2007) and Higham (1999) report on some
interesting applications which are connected to the continuation methods
in Section 7.

2.8. Broyden’s method

Quasi-Newton methods construct a model Jacobian from the history of the
iteration. One maintains both an approximation xn of the solution and
an approximation Bn of the Jacobian. There are many of these methods
(Kelley 1995, Dennis and Schnabel 1996, Dennis and Walker 1981) and they
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Numerical methods for nonlinear equations 227

are widely used in optimization. They have largely been replaced by JFNK
methods for nonlinear equations. We will briefly discuss Broyden’s method,
the simplest of them and the one that is used in the NOX code from Trilinos
(Heroux et al. 2005).

The Broyden update is

B+ = Bc +
(y −Bcs)sT

sT s
. (2.25)

Here y = F(x+) − F(xc) and s = x+ − xc. One can think of this as a
generalization of the secant method for scalar equations. For the secant
equation, the model derivative at the new point x+ is

b+ =
f(x+)− f(xc)

x+ − xc
=
y

s
,

giving b+s = y. For systems of equations, the secant equation

B+s = y

is a system of N equations in N2 unknowns. This enables construction
of updates that satisfy structural constraints such as sparsity or positivity.
Dennis and Schnabel (1996) and Kelley (1995) discuss several kinds of secant
updates for nonlinear equations. In optimization, for example, one often
wants the model Hessian to be symmetric and positive definite. There
are many quasi-Newton update which do that (Dennis and Schnabel 1996,
Kelley 1999, Nocedal and Wright 1999). One can also design updates to
capture functional analytic properties of infinite-dimensional problems and
their discretizations (Kelley and Sachs 1993, Kelley and Sachs 1995, Kelley
and Sachs 1987, Kelley and Sachs 1989, Hart and Soul 1973). The most
general accounts of theory can be found in Dennis and Walker (1981) and
Dennis and Schnabel (1979).

One can implement the Broyden update by storing two vectors for each
iteration and using the Sherman–Morrison formula (Kelley 1995) to update
the product of B−1 and a vector. The storage burden can be reduced
to one vector per nonlinear iteration by using the dependence of y on s
(Kelley 1995, Deuflhard, Freund and Walter 1990). JFNK methods place
the storage burden on the linear iteration, and that seems to be best.

The formula for the update (2.25) allows for a line search in which

s = −λB−1c F(xc).

Theorem 2.6 does not apply to a Broyden–Armijo algorithm patterned after
algorithm newton armijo, but in practice such an algorithm often works
fine.

The convergence theory is only local and requires the standard assump-
tions and accurate initial approximations to the solution and the Jacobian
at the solution.
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228 C. T. Kelley

Theorem 2.7. If the standard assumptions hold and x0 and B0 are suf-
ficiently near x∗ and F′(x∗), then xn → x∗ q-superlinearly:

lim
n→∞

‖en+1‖
‖en‖

= 0.

Broyden’s method and JFNK methods have remarkable similarities when
applied to discretizations of infinite-dimensional problems. The precondi-
tioning issues are very closely related; see, for example, Kelley and Sachs
(1985), Kelley and Xue (1996), Burmeister (1975) and Nevanlinna (1993).

2.9. Fréchet and Gâteaux derivatives

We have not fully explained how the results in this section map to the
infinite-dimensional setting. The reason for this is that we have defined the
derivative in the context of its matrix representation as a Jacobian matrix.
We are now at a point where we must make a coordinate-free definition to
consider our first infinite-dimensional example in the next section.

If D ⊂ RM , we will let D◦ denote the interior of D.

Definition 2.8. A function F : D ⊂ RN → RM is Fréchet differentiable
at x ∈ D◦ if there is a linear map F′(x) from RM to RN such that

lim
h→0

‖F(x + h)− F(x)− F′(x)h‖
‖h‖

= 0. (2.26)

F′ is called the Fréchet derivative (or simply the derivative) of F at x.

Fréchet differentiability simply means that the difference quotients con-
verge to the derivative uniformly in the direction h/‖h‖ as ‖h‖ → 0. The
Jacobian matrix is simply the matrix representation of the Fréchet derivat-
ive in the basis of coordinate directions. So the jth column of the Jacobian
is F′(x)uj as expressed in (2.11). The results on convergence of Newton’s
method in this section do not change in the infinite-dimensional case. For
quasi-Newton methods, such as Broyden’s method, superlinear convergence
depends on compactness properties (Kelley and Sachs 1985) of I−F ′, which
are trivially satisfied in finite-dimensional problems.

One useful way to compute the Fréchet derivative is to apply (2.26) to
compute F′(x)u for an arbitrary u. Often one can easily extract F′ directly
by looking at the results, since

F′(x)u =
d

dt
F(x + tu)

∣∣∣∣
t=0

. (2.27)

As an example, suppose that

F(x) = Ax + f(x),
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where A is a linear operator and f(x) is the substitution operator

f(x) ≡


f(x1)
f(x2)

...
f(xN )

.
Then (2.27) implies that

F′(x) = A + diag(f ′(x)).

If it exists, the limit

dF(x : u) = lim
t↓0

F(x + tu)− F(x)

t
(2.28)

is called the directional derivative of F at x in the direction u. The scalar
example f(x) = |x| at x = 0 has directional derivatives in all directions, but
is not Fréchet differentiable. This example also shows that dF(x : u) need
not be linear in u. If the limit

dF(x : u) = lim
t→0

F(x + tu)− F(x)

t
(2.29)

exists, then dF(x : u) is called the Gâteaux derivative of F at x in the
direction u. In this case

dF(x : u) =
d

dt
F(x + tu)

∣∣∣∣
t=0

,

but still need not be linear in u. With the exception of Sections 6 and 7.1,
all functions in this article will be Fréchet differentiable. If F is Fréchet
differentiable at x, then dF(x : u) = F′(x)u for all u.

2.10. Example: Chandrasekhar H-equation

This is the first example of an operator in a function space. We will denote
such operators by script upper-case letters to distinguish them from their
discretizations. The discretizations will be functions on RN and will have
the boldface fonts we have been using.

The Chandrasekhar H-equation (Chandrasekhar 1960, Busbridge 1960) is

F(H)(µ) = H(µ)−
(

1− ω

2

∫ 1

0

µH(ν) dν

µ+ ν

)−1
= 0. (2.30)

The equation arises in radiative transfer theory and is a very tractable
example of a nonlinear equation in a function space. We will regard F as
a map on C[0, 1], the Banach space of continuous function on the interval
[0, 1] with the ‖·‖∞-norm. The unknown is a function H ∈ C[0, 1]; ω ∈ [0, 1]
is a parameter.
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230 C. T. Kelley

We will discretize the equation with the composite midpoint rule∫ 1

0
f(µ) dµ ≈ 1

N

N∑
j=1

f(µj),

where µi = (i− 1/2)/N for 1 ≤ i ≤ N .
This leads to an equation in RN :

FN (h)i = hi −
(

1− ω

2N

N∑
j=1

µihj
µi + µj

)−1
. (2.31)

We will discuss some important properties of this equation in the context
of the infinite-dimensional problem. Our conclusions will be equally valid for
the discrete problem because the midpoint rule integrates constant functions
exactly.

2.10.1. The continuous problem

Our first task is to differentiate F . Applying (2.26), we see that for all
v ∈ C[0, 1],

(F ′(H)w) = w − ωLw

(1− ωLH)2
,

where L is the integral operator defined by

Lw(µ) =
1

2

∫ 1

0

µw(ν) dν

µ+ ν
.

Hence,

F ′(H) = I − ωL

(1− ωLH)2
.

We will now check the standard assumptions. To see that there is a
solution, we note that the sequence

H0 = 1, Hn+1 = 1 + ωHnLHn

is increasing. We will show convergence by showing that the L1-norms are
bounded:

‖Hn‖1 =

∫ 1

0
Hn(ν) dν ≤ β ≡ 1 +

√
1− ω

2/ω
. (2.32)

Clearly (2.32) holds for n = 1. To proceed by induction, suppose ‖Hn‖1 ≤ β.
We seek to show that∫ 1

0
Hn+1(µ) dµ = 1 +

ω

2

∫ 1

0

µHn(ν)Hn(µ)

µ+ ν
dν (2.33)

for all 0 ≤ µ ≤ 1. The trick is to integrate both sides of (2.33) with respect
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to µ and note that∫ 1

0

∫ 1

0

µHn(ν)Hn(µ)

µ+ ν
dν dµ =

∫ 1

0

∫ 1

0

νHn(ν)Hn(µ)

µ+ ν
dν dµ

= ‖Hn‖21/2 ≤ β2/2.

We are done since

ωβ2/4 + 1 ≤ β

by the quadratic formula. So our sequence Hn converges in L1 to a function
H which satisfies H = 1 + ωHLH. This implies that H satisfies (2.30),
since if 1−ωLH vanishes at any µ ∈ [0, 1], then H(µ) = 1 +H(µ) implying
that H(µ) = 0, which violates the equation since H(µ) ≥ 1. Also, since Hn

is an increasing sequence, H is a positive function of µ for ω ∈ [0, 1].
So H ∈ L1[0, 1] satisfies (2.30). This implies that H is continuous since

L is a bounded operator from L1[0, 1] to C[0, 1].
Lipschitz continuity of F ′ is easy to check. The most interesting point is

non-singularity of F ′(H). If H is the solution of (2.30), then it is clear by
the argument above that∫ 1

0
H(µ) dµ =

1 +
√

1− ω
2/ω

. (2.34)

This clearly shows that there is no real solution for ω > 1.
Since F ′ is the sum of a compact integral operator and the identity, singu-

larity of the operator implies that there is a non-trivial null space. Suppose
F ′(H)w = 0. Then

w =
ωLw

(1− ωLH)2
.

We may take w ≥ 0 by the Perron–Frobenius theorem (Karlin 1959) and

may therefore assume that
∫ 1
0 w(µ) dµ > 0. Since H is a solution, we have

(1− ωLH)−1 = H, and so

w(1− ωwLH) = ωHLw.

So ∫ 1

0
w(µ) dµ = ω/2

∫ 1

0
w(µ) dµ

∫ 1

0
H(ν) dν

implies that ω‖H‖1 = 2, which by (2.34) implies that ω = 1.
So F ′(H) is non-singular unless ω = 1. When ω = 1, F ′(H) is indeed

singular and, again by the Perron–Frobenius theorem, the null space has
dimension one and is spanned by a non-negative function. In fact, that
function is w(µ) = µH(µ). We see that the singularity structure of the H-
equation is quite simple and will use the H-equation as an example again
in Section 4.
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232 C. T. Kelley

2.10.2. The discrete problem

Now we return to the discrete version. The purpose of this section is to
illustrate how exploiting problem structure can give very different cost es-
timates from the simple accounting of O(N3) work for a linear solve and N
function evaluations for a Jacobian.

We begin with the cost of an evaluation. Using µi = (i − 1/2)/N for
1 ≤ i ≤ N and (2.31), we obtain

FN (h)i = hi −
(

1− ω

2N

N∑
j=1

ihj
i+ j − 1

)−1
. (2.35)

The approximate integral operator L, where

Lij =
ωi

2N(i+ j − 1)
,

is the product of a diagonal and a Hankel matrix (Golub and Van Loan
1996). In fact L = D1K, where

D1 = diag(i/2N)

and K is the Hankel matrix

Kij = 1/(i+ j − 1).

So evaluation of Lh can be done at a cost of O(N logN) work if one com-
putes the product of the Hankel matrix and a vector with a fast Fourier
transform (Golub and Van Loan 1996). Since the remaining cost of the
evaluation of FN reduces to simple binary operations, the cost of a function
evaluation is O(N logN) work.

We may now proceed exactly as we did in the continuous case. The
Jacobian matrix is

(FN )′(h)ij = δij −
ωLij

1− ω(Lu)i
. (2.36)

Hence the Jacobian can be expressed as the identity plus the product of a
diagonal and a Hankel matrix. If we set

D2 = diag(1− ω(Lu)i)
−1,

then

(FN )′(h) = I = ωD1D2K,

and the Jacobian matrix can be constructed and stored with O(N2) work
and the Jacobian-vector product computed with O(N logN) work.

One conclusion that may be unexpected is that, even if one does the
matrix–vector product with K naively for O(N2) work, the solution with
Newton–GMRES is far faster than one using a direct method to factor F′.
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Table 2.2. Iteration component costs.

Function Jacobian Jacobian-vector LU factorization
evaluation evaluation product

O(N log(N)) O(N2) O(N log(N)) N3/3 +O(N2)

The integral equation structure can be exploited to show that the number
of Krylov iterations per nonlinear iteration can be bounded independently
of N . Hence, as N becomes large the advantage of Newton–Krylov over
Newton–LU grows rapidly. The reader should try this and see. Chandra-
sekhar (1960) tabulates the solution to several figures.

This problem has a rich structure and we will report the costs of a com-
putation in some detail. Table 2.2 summarizes our discussion on the costs
of function evaluations, Jacobian evaluations and Jacobian-vector products
as functions of N .

We will now solve the H-equation for a few values of ω. The problem
becomes more difficult as ω increases. We will use ω = 0.5 (easy), ω = 0.99
(less easy) and ω = 1 (tricky). The initial iterate in all cases will be

h0 = (1, 1, . . . , 1)T .

We will terminate the iteration when

‖FN (hn)‖ ≤ 10−10‖FN (h0)‖,

so τr = 10−10 and τa = 0. We will use a mesh with N = 1000 points to
begin with and then demonstrate that the performance of all the methods
does not vary much as the mesh is refined. We will do this numerically in
this chapter and discuss the theory in Section 3.3.

We will first look at Newton’s method. The dominant cost for a New-
ton iteration is the matrix factorization. Therefore Newton’s method, even
though the number of nonlinear iterations is small, is the most expensive
approach for this problem when ω < 1 and the number of mesh points N
is large. In Figure 2.3 we plot the relative residual (‖FN (hn)‖/‖FN (h0)‖)
histories for the three values of ω.

Figure 2.3 reinforces the ideas from this section. The concave plots of
residual histories for ω < 1 indicate superlinear convergence. The linear
plot for ω = 1, however, shows that the standard assumptions are violated
in this case, as we demonstrated above. One can analyse this (Decker and
Kelley 1980) and show that the simple scalar equation x2 = 0 fully explains
the q-/linear convergence rate. For any x0 6= 0, the Newton iteration for
x2 = 0 is simply

xn = xn−1/2.
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Figure 2.3. Newton’s method for the H-equation example.
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Figure 2.4. The chord method for the H-equation example.
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Table 2.3. Newton residuals and timings.

N
‖FN (h1)‖
‖FN (h0)‖

‖FN (h2)‖
‖FN (h0)‖

‖FN (h3)‖
‖FN (h0)‖

Time

1000 5.14×10−3 1.00×10−7 2.85×10−15 0.13
2000 5.14×10−3 1.00×10−7 2.91×10−15 0.53
4000 5.14×10−3 1.00×10−7 2.68×10−15 2.47
8000 5.14×10−3 1.00×10−7 2.85×10−15 13.68

Hence the convergence is q-linear with q-factor 1/2. The residuals

x2n = x2n−1/4

converge q-linearly to 0 with q-factor 1/4.
In Figure 2.4 we plot the residual histories for the chord method. For

ω = 0.5 and ω = 0.99 one can see the q-linear convergence predicted by
theory. However, for ω = 1 something different is happening. The discussion
for the continuous case applies without modification to the discrete problem
and F′(h∗) is singular for ω = 1. There is theory for that case (Decker and
Kelley 1983) and the results can be explained by considering the scalar
equation x2 = 0. With the initial iterate x0 = 1 the chord iterations are

xn = xn−1(1− xn−1/2) = O(1/n),

which is very slow convergence.
If one refines the mesh for this problem, one will have a more accurate

approximation of the solution of the integral equation. However, mesh re-
finement will have a very small effect on the iteration statistics. Table 2.3
illustrates this by showing some relative residual norms for the Newton it-
eration with ω = 0.5 and a few values of N . As you can see, the relative
residual norms are identical to three figures until the terminal iteration.
This effect is called mesh independence. We will return to this topic in Sec-
tion 3.3. We were limited to N = 8000 because we could not store or factor
larger dense matrices in our computing environment.

We also report computer times in seconds using the MATLAB tic and
toc commands. We do this only to show that the run times do not, as you
might expect from the O(N3) work in the matrix factorizations, increase by
a factor of eight as we double the size of the problem. The reason for this is
that there is a great deal of O(N2) work in the Jacobian evaluations, which
is significant in this case, and the LU factorization in MATLAB is very fast.
The effects of the O(N2) work are also seen in the chord iterations. One
would expect the chord iterations to be much faster if the O(N3) work in the
matrix factorization dominated the computation. In Table 2.4 we show the
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236 C. T. Kelley

Table 2.4. Chord residuals and timings.

N
‖FN (h1)‖
‖FN (h0)‖

‖FN (h2)‖
‖FN (h0)‖

‖FN (h3)‖
‖FN (h0)‖

‖FN (h4)‖
‖FN (h0)‖

‖FN (h5)‖
‖FN (h0)‖

Time

1000 5.14×10−3 4.45×10−5 3.81×10−7 3.26×10−9 2.79×10−11 0.08
2000 5.14×10−3 4.45×10−5 3.81×10−7 3.26×10−9 2.79×10−11 0.35
4000 5.14×10−3 4.45×10−5 3.81×10−7 3.26×10−9 2.79×10−11 1.51
8000 5.14×10−3 4.45×10−5 3.81×10−7 3.26×10−9 2.79×10−11 8.41
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Figure 2.5. Newton–GMRES for the H-equation example.

first seven scaled residual norms for the chord iteration and the timings for
the entire sequence of 63 iterations. As is the case with Newton’s method,
the iteration statistics agree. Figures 2.3 and 2.4 would not change with
higher values of N .

The performance of the JFNK iteration is far better because there is no
O(N2) work or storage at all – only the O(N logN) cost of the function
evaluations. We will illustrate this by repeating the computations above
with Newton–GMRES, a finite-difference Jacobian-vector product, and a
constant forcing term of η = 0.1. The results were not affected by switching
to an analytic Jacobian-vector product. In Figure 2.5 we plot the iteration
histories. The curves are not as smooth as those in Figure 2.3, which reflects
the limited accuracy of the linear solves. However, the overall cost was, as
you will see in Table 2.5, much less.
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Table 2.5. Newton–GMRES residuals and timings.

N
‖FN (h1)‖
‖FN (h0)‖

‖FN (h2)‖
‖FN (h0)‖

‖FN (h3)‖
‖FN (h0)‖

‖FN (h4)‖
‖FN (h0)‖

‖FN (h5)‖
‖FN (h0)‖

Time

8 000 1.43×10−2 5.28×10−4 5.22×10−5 6.70×10−7 6.95×10−12 0.02
16 000 1.43×10−2 5.28×10−4 5.22×10−5 6.70×10−7 6.95×10−12 0.03
32 000 1.43×10−2 5.28×10−4 5.22×10−5 6.70×10−7 6.95×10−12 0.06
64 000 1.43×10−2 5.28×10−4 5.22×10−5 6.70×10−7 6.95×10−12 0.09

The iteration is so fast that we must solve much larger problems to see
the O(N logN) cost reflected in the timings. Table 2.5 shows the mesh
independence of the nonlinear iteration. The performance of the linear
iteration is also mesh-independent. For each value of N the entire iteration
needed 19 calls to FN . These 19 calls include both the evaluation of the
residual and the additional calls for the finite-difference Jacobian-vector
product. One could also use an analytic Jacobian-vector product and both
the cost and the results in Table 2.5 would be the same.

3. The Kantorovich theorem and mesh independence

The Kantorovich theorem is the nonlinear analogue of the ‘stability and
consistency imply convergence’ results in differential equations (LeVeque
2007). The simplest example will illustrate the idea for linear problems.
Suppose that u∗ is the solution of boundary value problem

−u′′(x) = f(x), u(0) = u(1) = 0

for some twice continuously differentiable function f . Let Dh be the stand-
ard second-order approximation,

Dh =
1

h2



2 −1 0 . . . 0, 0
−1 2 −1 , 0 . . . 0
0 −1 2 −1, . . . 0
...

. . .
. . .

. . .
. . .

...
0 . . . , , 0, −1 2 −1
0 . . . , . . . , , 0 −1 2


,

where h = 1/(N + 1) is the spatial mesh width. Define Eh : C[0, 1] → RN
by

Eh(u)i = u(xi),

where xi = (i+ 1)h is the ith interior grid point.
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Second-order consistency is the statement that

AhEu∗ − Ef = O(h2).

Stability is the uniform boundedness of ‖(Dh)−1‖, which is easy to verify.
Together, stability and consistency imply that

‖Eu∗ − (Dh)−1Efl‖ = O(h2)

uniformly in h. Hence, if uh = (Dh)−1Ef then

‖uh − Eu∗‖ = O(h2),

which is second-order convergence.

3.1. The theorem

The Kantorovich theorem (Kantorovich and Akilov 1982) is a convergence
result for Newton’s method that replaces the standard assumption that
there is a solution with the statement that F(x0) is sufficiently small (con-
sistency). That coupled with a uniform bound on F′(x)−1 in a neighbour-
hood of x0 (stability) implies that there is a unique solution x∗ in a (smaller)
neighbourhood of x0 and that x∗ is near x0 (convergence!).

We use the formulation of the theorem from Ortega and Rheinboldt
(1970). There are several variations of the theorem. In addition to Or-
tega and Rheinboldt (1970) and Kantorovich and Akilov (1982), one can
find examples of alternative formulations in Kelley (1995), Dennis (1969),
and Dennis (1971). In Section 6.2 we will present a version from Qi and
Sun (1993) for non-smooth functions.

The assumptions are similar to the standard assumptions.

Assumption 3.1. F is defined and Lipschitz continuously differentiable
in D ⊂ RN .

• Equation (2.1) holds for all x, y ∈ D.

• ‖F′(x)−1‖ ≤ β for all x ∈ D.

• There is x0 ∈ D such that ‖F′(x0)
−1F(x0)‖ ≤ η.

• α ≡ βγη ≤ 1/2.

• The ball B(x0, r+) ⊂ D, where

r± =
1±
√

1− 2α

βγ
.

Note that the assumptions on x0 cannot be stated in terms of ‖x0 − x∗‖
because the existence of x∗ is part of the conclusion of the theorem. Rather,
one uses ‖F′(x0)

−1F(x0)‖ as a surrogate. However, the theorem will imply
that

η ≥ ‖F′(x0)
−1F(x0)‖ = ‖e0‖+O(‖e0‖2).
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Since β = ‖F′(x∗)−1‖+O(‖e0‖), the assumption βγη < 1/2 implies that

‖e0‖ ≤
‖F′(x∗)−1‖−1

2γ
+O(‖e0‖2),

which is close to (2.3) if ‖e0‖ is small enough to permit one to neglect the
second-order term. One remarkable fact about the Kantorovich theorem is
that there is no need for ‖e0‖ to be small to obtain convergence. In that
sense the theorem is a global convergence result. This is why one cannot
expect q-quadratic convergence for the entire iteration. The r-quadratic
convergence one obtains from the theorem is remarkable.

Theorem 3.2. Let Assumption 3.1 hold. Then there is a unique root x∗ of
F in B(x0, r+), the Newton iteration with x0 as the initial iterate converges
to x∗, and xn ∈ B(x0, r−) for all n. The errors satisfy the estimate

‖en‖ ≤
(2βηγ)2

n

2nβγ
, (3.1)

and hence the convergence is r-quadratic.

We refer to Ortega and Rheinboldt (1970) for the proof and to Kelley
(1995) for a simpler proof of an analogous theorem for the chord method.
The proof in Kelley (1995) is based on directly showing that the chord map

GC(x) = x− F′(x0)
−1F(x)

is a contraction on B(x0, r−). The proof of Theorem 3.2 uses a recursion
relation for a bound on the steps to show that the Newton map

GN (x) = x− F′(x)−1F(x)

is a contraction and to obtain the convergence rate estimate (3.1).

3.2. A boundary value problem

In this section we will illustrate in some detail how the Kantorovich theorem
can be applied to show convergence of a finite-difference approximation
to a nonlinear two-point boundary value problem. We will begin with an
existence/uniqueness result for the continuous problem and then directly
estimate η, β and γ to apply the Kantorovich theorem.

The boundary problem is

−u′′(x)− cos(u) = 0, u(0) = u(1) = 0. (3.2)

We will use the contraction mapping theorem in the space C[0, 1] to prove
existence and uniqueness of a solution of (3.2).
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Let G be the inverse of the negative Laplacian in one space dimension
with homogeneous Dirichlet boundary conditions, that is,

G(u)(x) =

∫ 1

0
g(x, y)u(y) dy, (3.3)

where the Green’s function g is

g(x, z) =

{
x(1− z) 0 < x < z,

z(1− x) z < x < 1.

If f ∈ C[0, 1] and u = G(f), then

−u′′ = f, u(0) = u(1) = 0.

Hence (3.2) has a solution if and only if the equivalent integral equation

F(u)(x) = u(x)−
∫ 1

0
g(x, y) cos(u(y)) dy = 0 (3.4)

has a solution. We express the integral equation as a fixed-point problem

u(x) = K(u)(x) ≡ G(cos(u))(x),

and will show that K is a contraction on C[0, 1].
Clearly

|cos(u)− cos(v)| ≤ |u− v|, for all u, v.

So

|K(u)(x)−K(v)(x)| ≤ ‖u− v‖∞
∫ 1

0
g(x, y) dy.

Note that

w(x) =

∫ 1

0
g(x, y) dy =

x(1− x)

2

and hence ‖w‖∞ = 1/8. Thus

‖K(u)−K(v)‖∞ ≤ ‖u− v‖∞/8.

So K is a contraction on C[0, 1]. We now know that the boundary value
problem has a unique solution u∗ ∈ C[0, 1]. We have also derived a uniform
bound for F ′(u)−1. For any w ∈ C[0, 1] we have (using (2.27))

F ′(u)w(x) = w(x) +

∫ 1

0
g(x, y) sin(u(y))w(y) dy

and so

‖F ′(u)w‖∞ ≥ (7/8)‖w‖∞.
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Hence

‖F ′(u)−1‖∞ ≤ 8/7

for all u ∈ C[0, 1]. We can also conclude from the above that F ′ is Lipschitz
continuous with Lipschitz constant γ ≤ 1/8.

We discretize the problem with central finite differences with a uniform
mesh width h. The discrete problem is

Dhuh + cos(uh) = 0.

We precondition with Gh ≡ (Dh)−1 and obtain the analogue of (3.4):

Fh(uh) = uh + Gh cos(uh) ≡ uh + Kh(uh). (3.5)

The smoothness of u∗ implies that there is η0 > 0 such that

‖Fh(Ehu∗)‖∞ ≤ η0h2 (3.6)

and that

‖(Fh)−1(u)‖∞ ≤ 2 (3.7)

uniformly in u and h. Clearly the Lipschitz constant γh of of (Fh)′ is ≤ 1/4
for h sufficiently small.

We are can now apply the Kantorovich theorem to show that a solution
uh of (3.5) exists and that

‖uh − Ehu∗‖∞ = O(h2). (3.8)

We will apply the theorem with β = 2 from (3.7), η = 2η0h
2 from (3.6) and

(3.7), and γ = γh = 1/4. Then

α = η0h
2 < 1/2

for h sufficiently small. So there is a solution uh in B(Ehu∗, r−) where

r− =
1−
√

1− 2α

βγ
=

1−
√

1− 2η0h2

1/2
= O(h2).

Summarizing, stability (3.7) and consistency (3.6) imply convergence.

3.3. Mesh independence results

The example in Section 3.2 made use of the fact that the parameters in
the Kantorovich theorem could be estimated independently of the mesh h.
Hence the convergence estimate in (3.1) is also independent of h. This is
a simple example of a mesh independence theorem. In this section we will
explore two variations of this idea. Classical mesh independence results are
about the convergence of the iteration statistics to those of an underlying
infinite-dimensional problem as a grid is refined. In this case the errors are
deterministic and we look at some of the ideas in this section. After that
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we consider tracking theorems. These results describe convergence of the
iteration statistics when the errors are stochastic and depend, for example,
on the sample size.

3.3.1. Deterministic errors

The concept of mesh independence has its origin in Allgower, Böhmer, Pot-
ra and Rheinboldt (1986). While the results may seem obvious, mesh inde-
pendence is a very useful concept in both nonlinear equations (Kelley and
Sachs 1991, Ferng and Kelley 2000) and optimization (Sachs 1990, Hinter-
müller and Ulbrich 2003).

The idea is that one is approximating an infinite-dimensional equation

F(u) = 0, (3.9)

defined on a Banach space X, with a sequence of finite-dimensional problems

Fh(u) = 0 (3.10)

on RN . The boundary value problem from Section 3.2 and the Chandra-
sekhar H-equation from Section 2.10 are examples of this situation. We will
be interested in a solution u∗ of (3.9) at which the standard assumptions
hold.

In both of these examples the performance of Newton’s method is mesh-
independent in the sense that the relative residuals not only converge to
zero, but also converge for each iteration as the mesh is refined. In Sec-
tion 3.2 we introduced one way to quantify this. Let Eh : X → RN be the
projection from the space X to RN that encodes the discretization. For a
finite-difference approximation, for example, Eh could be evaluation at the
grid points.

Convergence of the approximation means that the solution uh of (3.10)
satisfies

lim
h→0
‖uh − Ehu∗‖ = 0. (3.11)

In many cases, including the examples in Sections 3.2 and 2.10, one can
show that the Newton iterations also converge in the sense that

lim
h→0
‖uhn − Ehun‖ = 0, (3.12)

where uhn is the nth Newton iteration for (3.10) and un is the nth Newton
iteration for (3.9).

We will express the fact that the iteration statistics converge in two ways,
both of which follow from (3.11) and (3.12). These results also hold for the
JFNK methods we discussed in Section 2.6. We will denote the infinite-
dimensional iteration

un+1 = un −F ′(un)−1F(un).
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• Let ε > 0 and let kh be the least k such that ‖Fh(uhk)‖/‖Fh(uh0)‖ < ε.
Let k0 be the least k such that

‖F(uk)‖/‖F(u0)‖ < ε.

Then, for all h sufficiently small, |kh − k0| ≤ 1.

• Let K > 0 and let ε > 0 be given. Then, for h sufficiently small,∣∣∣∣‖Fh(uhk)‖
‖Fh(uh0)‖

−
‖F(uhk)‖
‖F(u0)‖

∣∣∣∣ < ε

for all 0 ≤ k ≤ K.

3.3.2. Tracking theorems

The results in Willert, Chen and Kelley (2015) consider the case where the
function F, the Jacobian F′ and Jacobian-vector products are not evaluated
directly, but are approximated using internal Monte Carlo computations.
The work was motivated by problems in neutron transport (Willert, Kelley,
Knoll and Park 2013, Knoll, Park and Smith 2011), where a Monte Carlo
simulation was embedded in the residual. The results are similar to mesh
independence theorems in that one seeks to show that some finite subset
of the iterations converges, but does not seek to drive the approximation
error (or its variance) to zero. However, the assumptions and convergence
theorems are more technical. We used the term ‘tracking’ in Willert et al.
(2015) rather than convergence.

We approximate functions, Jacobians, and Jacobian-vector projects with
a Monte Carlo simulation with a sample size NMC. The notation from
Willert et al. (2015) is as follows.

• NMC is the sample size for the function and NJ
MC is the sample size for

the Jacobian or Jacobian-vector product.

• F̃(x, NMC) is an outcome of the simulation for the residual F(x).

• J(x, NJ
MC) is an outcome of the simulation for the Jacobian F′(x).

• Jp(x,v, N
J
MC) is an outcome of the simulation for the Jacobian-vector

product F′(x)v.

We assume that the evaluations of F̃, J and Jp are independent.
Suppose the standard assumptions hold and that Newton’s method con-

verges for all u ∈ B(x∗, ρ). We make a consistency assumption for the
function and Jacobian evaluations.

Assumption 3.3. There are functions cF , cJ and cJv and an open set B′
which contains B(x∗, ρ) such that, for all x ∈ B′, unit vectors v ∈ RN and
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δ > 0,

Prob

(
‖F(x)− F̃(x, NMC)‖ > cF (δ)√

NMC

)
< δ, (3.13)

Prob

(
‖F′(x)− J(x, NJ

MC)‖ > cJ(δ)√
NJ

MC

)
< δ. (3.14)

In this article we will only summarize the results from Willert et al. (2015)
on methods which use full Jacobians. The assumptions on the quality of
the residual evaluation and the Jacobian are not sufficient to guarantee
quadratic convergence. The algorithm increases the number of samples
as the iteration progresses, which sometimes reflects practice. One would
never increase the number of samples rapidly enough to capture superlinear
convergence, and the theory reflects that. The algorithm from Willert et al.
(2015) is given in algorithm newton MC.

newton MC(u,NMC, N
J
MC, Ninc, η̂, τr, τa)

Evaluate rMC = F̃(u,NMC); τ ← τr‖rMC‖+ τa.
while ‖rMC‖ > τ do

Compute J(x, NJ
MC)

Find s which satisfies ‖J(u,NJ
MC)s + F̃(x, NMC)‖ ≤ η‖RMC‖ with 0 ≤

η ≤ η̂
x← x + s
Evaluate rMC = F̃(x, NMC);
NMC ← NincNMC

end while

Theorem 3.4. Let (3.13) and (3.14) from Assumption 3.3 and the as-
sumptions of Theorem 2.2 hold. Let rNewton ∈ (0, 1) be given and assume
that ‖e0‖ ≤ ρ and η̂ are small enough for the inexact Newton iteration
to converge q-linearly with a q-factor rNewton. Let a positive integer K,
r ∈ (rNewton, 1) and ω ∈ (0, 1) be given. Then there are η̂, NMC, NJ

MC and
Ninc, such that, with probability (1 − ω) for all 1 ≤ n ≤ K, the iteration
produced by algorithm newton MC satisfies

‖en‖ ≤ rn‖e0‖, (3.15)

If one approximates matrix–vector products rather than the Jacobian
itself, then assumption (3.14) must be replaced by one on the matrix–vector
product computation. The subtle, and important, problem with this is that
there is no underlying matrix. This can (and does: see Willert et al. 2013)
produce error accumulation in the Krylov method. Simoncini and Szyld
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(2003a, 2003b, 2007) explain this in detail. Willert et al. (2015) use that
analysis to derive very technical tracking results, which we mercifully omit
from this paper, for matrix-free methods.

4. Pseudo-arclength continuation

This section is the first of three (see also Sections 6.4 and 7) on continuation
methods. In this section we will look at parameter-dependent nonlinear
equations

F(x, λ) = 0 (4.1)

and the dependence of the solution(s) on the parameter λ. The parameter
ω in the H-equation is one example. Other examples are the load in a
mechanics problem or the voltage in circuit design. In general λ can be a
vector, but we will only consider scalars in this section.

The study of parameter-dependent systems is deeply connected to dynam-
ics (Govaerts 2000, Keller 1987, Marsden and McCracken 1976, Kuznetsov
1998), but we will only examine that connection in a superficial way in
Section 7. In particular we will not cover bifurcation, the case where two
different solution paths intersect. One must use the higher derivative tensors
to understand singularities of that type.

One may think that this is a trivial problem. One could begin with λ0 and
solve (4.1) for λ = λ0 with the Armijo line search from Section 2.7 to find
x∗(λ0). Then one picks an increment δλ in the parameter and solves (4.1) for
x(λ+δλ) with x∗(λ) as the initial iterate. Algorithm simple continuation
is a formal description of this simple parameter continuation idea.

simple continuation(x, λ, δλ, λmax,F, τa, τr)

Compute x∗(λ) with algorithm newton armijo with x as the initial
iterate.
while λ ≤ λmax do
λ← λ+ δλ
Compute x∗(λ) with algorithm newton armijo with x∗(λ−δλ) as the
initial iterate.

end while

Algorithm simple continuation can only succeed if the range of λ is
infinite. In the case of the H-equation, for example, there are no real solu-
tions for ω > 1, and something must go wrong when ω = 1 and the Jacobian
is singular at the solution. We explain that in the next section and then
describe one possibility for resolving the problem.
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4.1. The implicit function theorem

The implicit function theorem says that algorithm simple continuation
will successfully follow the solution path as long as F′ is safely non-singular
and also provides an estimate of δλ. We give a proof that is a nice application
of the Kantorovich theorem.

We begin with some notation. If F(x, λ) is a function of x ∈ RN and
λ ∈ R, then Fx will denote the Jacobian in the x variable. Hence Fx is an
N × N matrix. Similarly Fλ ∈ RN is the partial of F with respect to the
scalar variable λ.

Theorem 4.1. Assume the following:

• F(x0, λ0) = 0;

• F is a continuously differentiable function of λ;

• Fx and F are Lipschitz continuous in (x, λ) with Lipschitz constant γ,
that is,

‖F(x, λ)− F(y, µ)‖ ≤ γ(‖x− y‖+ |λ− µ|)

and

‖Fx(x, λ)− Fx(y, µ)‖ ≤ γ(‖x− y‖+ |λ− µ|);

• Fx(x0, λ0) is non-singular and ‖F−1x (x0, λ0)‖ ≤ β0.

Then there are ∆ and r, which depend only on β and γ, such that the
following hold:

• there is a solution x(λ) of (4.1) for all λ such that |λ− λ0| ≤ ∆;

• x(λ0) = x0;

• x(λ) is the only solution of (4.1) for ‖x− x0‖ ≤ r;
• x(λ) is a continuously differentiable function of λ.

Proof. Similarly to the proof of Theorem 2.2, Lipschitz continuity of Fx

implies that Fx(x, λ) is non-singular in the set

D =

{
(x, λ) | ‖x− x0‖+ |λ− λ0| ≤

1

2γ‖F−1x (x0, λ0)‖

}
,

and that

‖F−1x (x, λ)‖ ≤ β ≡ 2β0

for all (x, λ) ∈ D.
We have β and γ in hand for an application of the Kantorovich theorem.

We use Lipschitz continuity of F to obtain

‖F(x0, λ)‖ = ‖F(x0, λ)− F(x0, λ0)‖ ≤ γ|λ− λ0| ≡ η.
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Numerical methods for nonlinear equations 247

So if γ2β∆ < 1/2 and |λ− λ0| ≤ ∆, we can apply the Kantorovich theorem
with

α = βγη = βγ2∆ ≤ 1/2,

to complete the proof of existence with

r =
1±
√

1 + 2α

βγ
.

To show differentiability, we formally differentiate (4.1) with respect to λ
and note that x′(λ) is the solution z of

Fx(x, λ)z = −Fλ(x, λ).

If F has higher-order derivatives, one can show that x has as many de-
rivatives in λ as F does in (x, λ) (Rabinowitz 1971).

If Fx(x∗, λ∗) is singular, then the implicit function cannot be used to
assert that there are solutions near λ∗. In the case of the H-equation,
Fh(h∗, 1) is singular and (2.34) implies that there is no real solution for
ω > 1.

So, does the solution arc stop dead at the point (H(1), 1)? The answer is
that for many common singularities, including the one for the H-equation,
the solution arc does not terminate abruptly but either loops back or be-
comes unbounded (Crandall and Rabinowitz 1971, Rabinowitz 1971, Keller
1987). We will discuss some specific examples in the rest of this section.

4.2. Simple folds and pseudo-arclength continuation

We will begin this section with an example that is both simple and general.
Consider the scalar equation

f(x, λ) = x2 − λ.

The function f is Lipschitz continuous if x is restricted to a bounded set.
Since fx = 2x the Lipschitz constant of the derivative is 2. There is a
unique solution x(0) = 0 when λ = 0, no real solution when λ < 0, and
two solutions when λ > 0. The singularity of fx at λ = 0 has, as we will
see, exactly the same structure as the singularity of the H-equation when
ω = 1.

Suppose we begin with (x, λ) = (1, 1) and try to use simple continuation
to reach and pass λ = 0. The continuation will fail because there is no
solution for λ < 0. However, the path of solutions continues beyond λ = 0,
the only difference being that the sign of x changes. How can we modify
the simple continuation algorithm to follow the path without getting stuck
at the singularity?
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248 C. T. Kelley

One way would be to interchange the roles of λ and x. This is the idea
of the PITCON (Rheinboldt 1986) code. If we do that, then fλ = −1
is never singular and we can continue with ease. The problem with this
approach is that one must identify the variable to exchange with λ. Rhein-
boldt (1986) identifies many situations where this is readily done. There
are many advanced continuation codes (Salinger et al. 2002, Doedel and
Kernévez 1986, Govaerts 2000) and some very good books (Govaerts 2000,
Kuznetsov 1998, Doedel 1997, Keller 1987, Rheinboldt 1986) on the topic.

The approach we describe in this section, pseudo-arclength continuation,
attempts to parametrize the solution arc and then add an approximation to
arclength as a new parameter (Keller 1987).

To see how this would work, suppose that x(s) and λ(s) are functions of
an arclength parameter s. Setting ẋ = dx/ds and λ̇ = dλ/ds, we use the
arclength normalization

ẋ2 + λ̇2 = 1. (4.2)

We define an expanded equation in z = (x, λ)T with s as the parameter:

G(z, s) ≡
(

f(x, λ)

ẋ2 + λ̇2 − 1

)
=

(
0
0

)
. (4.3)

If gz is non-singular and one can effectively approximate ẋ and λ̇, then one
can apply simple continuation to the expanded system.

We will investigate the non-singularity of Gz first. Clearly

Gz =

(
fx fλ
ẋ λ̇

)
=

(
2x −1

ẋ λ̇

)
,

so

det(Gz) = 2xλ̇+ ẋ.

Use f(x, λ) = 0 to get

0 = df(x, λ)/ ds = fxẋ+ fλλ̇ = 2xẋ− λ̇

and so 2xẋ = λ̇
Now multiply det(Gz) = 2xλ̇+ ẋ by ẋ and

ẋ det(Gz) = 2xẋλ̇+ ẋ2.

Use 2xẋ = λ̇ and

ẋ det(Gz) = λ̇2 + ẋ2 = 1.

So det(Gz) 6= 0.
One way to approximate ẋ and λ̇ is to use simple continuation for two

values of λ and then switch to continuation in s. If one has two solutions
(x(λ0), λ0) and (x(λ−1), λ−1) in hand, then one could approximate ds by
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using

ẋ2 + λ̇2 = 1

to conclude that if

(x0 − x−1)2 + (λ0 − λ−1)2 ≡ ds2

then

ẋ0 ≈
x0 − x−1

ds
and λ̇0 ≈

λ0 − λ−1
ds

.

Having ẋ0 and λ̇0, we can use any increment ds in s we like, and replace
ẋ2 + λ̇2 − 1 = 0 with

ẋ0(x− x0) + λ̇0(λ− λ0)− ds = 0.

So, the equation G(z, s) = 0 changes as we increment s because the ap-
proximation of ż depends on the current point in the path. However, for
sufficiently small ds this approximation works very well, and the implicit
function theorem applies at every stage of the continuation. The analysis is
a bit trickier in several variables, but this simple problem captures all the
essential ideas.

In several variables we must require that either Fx be non-singular or
that the singularity be a simple fold.

Definition 4.2. The point (x∗, λ∗) is a simple fold point if:

• F(x∗λ∗) = 0;

• Fx(x∗λ∗) has a one-dimensional null space;

• Fλ(x∗λ∗) is not in the range of Fx(x∗λ∗).

For our simple scalar example, the first two conditions in the definition
are trivially true. Since fx(0, 0) = 0 and fλ(0, 0) = −1, the third condition
holds as well.

Pseudo-arclength continuation in the case of several variables proceeds in
the same way as our scalar example. We seek to advance in arclength by
ds from a point (x0, λ0) on the solution path. We do this by solving the
expanded system for z = (xT , λ)T :

G(z, s) ≡
(

F(x, λ)
N(z, s)

)
=

(
0
0

)
. (4.4)

In (4.4),

N(z, s) ≈ ‖ẋ‖2 + λ̇2 − 1
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is a normalization term. One common choice is the secant normalization

N(z, s) = θ

(
x(s0)− x(s−1)

s0 − s−1

)T
(x(s)− x(s0))

+ (1− θ)
(
λ(s0)− λ(s−1)

s0 − s−1

)
(λ(s)− λ(s0))− (s− s0), (4.5)

which we can use when two points on the path are available. To start the
continuation, a typical choice is the norm-based normalization

N(z, s) = θ‖x− x(s0)‖2 + (1− θ)|λ− λ(s0)|2 − (s− s0)2. (4.6)

The parameter θ is a scaling parameter that balances the size of the vector
norm with the scalar parameter λ.

Summarizing, algorithm arclength continuation is a formal description
of pseudo-arclength continuation.

arclength continuation(x, λ, ds, S,F, τa, τr)

Set s = 0,x(0) = x, λ(0) = λ.
Compute x∗(0) with algorithm newton armijo with x as the initial it-
erate. You now have z∗(0).
while s ≤ S do
s← s+ ds.
Compute z∗(s) with algorithm newton armijo with x∗(s− ds) as the
initial iterate.

end while

We describe the continuation method as a theorem.

Theorem 4.3. Suppose F(x(s), λ(s)) = 0 for 0 ≤ s ≤ S, and for each s
either Fx is non-singular or (x(s), λ(s)) is a simple fold singularity. Let G
be defined by (4.4) with either (4.5) or (4.6) used as normalization. Then
the implicit function theorem applies to G(x, s) for all 0 ≤ s ≤ S. Moreover,
for ds sufficiently small, algorithm arclength continuation will find the
points z(kds) = (x(kds)T , λ(kds))T for 0 ≤ kds ≤ S + ds.

Theorem 4.3 asserts that if the parameter is changed from λ to s, then the
singularity has been eliminated and the path of solutions is homeomorphic
to a line segment (Crandall and Rabinowitz 1971). In that event, all one
has to do in order to follow the path of solutions is to apply algorithm
arclength continuation. In addition, one can prove a mesh independence
result (Ferng and Kelley 2000) for discretizations of continuous problems.

As you might imagine, there are a few details to resolve. The parameter
θ in (4.5) and (4.6) must be used to maintain mesh independence if one is
discretizing a continuous problem. The reason for this is that if one uses a

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492917000113
Downloaded from https://www.cambridge.org/core. North Carolina State University, on 30 May 2018 at 20:08:09, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492917000113
https://www.cambridge.org/core


Numerical methods for nonlinear equations 251

solver which is based on the discrete `2-norm, that norm does not converge
to the integral L2-norm as the mesh is refined. In the case of the midpoint
rule, for example, ∫ 1

0
f(µ) dµ ≈ 1

N

N∑
i=1

f(µi),

and one would use θ = 1/N , where N is the number of spatial mesh points.
Without this the discrete approximation would not be consistent with the
continuous problem.

Another important detail is the continuation itself. The theorem limits
the range of s for a good reason. In some cases, the H-equation being one
of them, λ(s) → λ∞ = 0 as s → ∞ while ‖x(s)‖ → ∞. In this case one
needs to reduce ds as the continuation progresses in order to ensure that the
solutions stay on the path. Even with a line search, there is no guarantee
that the solutions will stay on the path (as opposed to jumping to a different
solution branch) if the initial iterate is poor. Hence we limit the range of s
in the theorem so that one choice of ds will suffice.

Those readers who are familiar with initial value problems will not be
surprised to hear that the initial iterate for the solve step in algorithm
arclength continuation is called the predictor. The algorithm uses the
trivial predictor, that is, z(s) as the initial iterate for z(s + ds). Since one
has an estimate for ż(s),

ż(s) ≈ ((x(s)− x(s− ds))T , λ(s)− λ(s− ds)T /ds,

one could use linear extrapolation to form the linear predictor

z0(s+ ds) = z(s) + ż(s)ds, (4.7)

which generally performs better. Finally, similarly to numerical integration
of initial value problems, it is a bad sign if the nonlinear solver requires too
many iterations or a line search. Those events are signals that the predictor
is poor and that one should reduce ds.

In our numerical example we used ds = 0.002 and let the continuation
run until the line search failed because the limit on stepsize reductions had
been exceeded. One would expect that to happen at some point because
the solutions are moving farther apart and the predictor’s performance is
therefore becoming worse as the continuation progresses.

We will illustrate the output for the H-equation. In the example we used
Newton–GMRES for the nonlinear solver and a forward-difference Jacobian-
vector product. We used the forcing term from (2.24). We would expect
from (2.34) that there are two solutions for 0 < ω < 1, one for each choice
of sign for the square root. The continuation computation confirms that.

Typically one plots the progress of a continuation with λ on the horizontal
axis and a functional of x on the vertical axis. For the H-equation and its
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Figure 4.1. Solution path for H-equation.

discretization the function is strictly positive (in fact ≥ 1) and increasing.
One could use either H(1) (or hN in the discrete case) or the L1-norm∫ 1

0
H(µ) dµ or

1

N

N∑
i=1

hi.

We use hN = ‖h‖∞ to illustrate the steep rise in the size of the solution.
See Figure 4.1.

We used the secant normalization for all but the first point on the path
and exploit the fact that if λ(0) = 0 then H ≡ 1. This is also true for the
discrete case. Hence there is no need to solve the equation at the first point
on the path.

4.3. The Bratu problem

In this section we illustrate how multiple solutions of a nonlinear equation
can have very different properties when considered as steady-state solutions
of a time-dependent problem. Consider the system of ordinary differential
equations

ẋ = −F(x), (4.8)

where ẋ = dx/dt. We chose the sign of F to be consistent with the standard
practice in pseudo-transient continuation (see Section 7).

A solution x∗ is a steady-state solution if it is independent of time. In
that case (4.8) implies that

0 = ẋ∗ = −F(x∗).
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Here x∗ is dynamically stable if the solution x of the initial value problem

ẋ = −F(x), x(0) = x0

converges to x∗ as t → ∞ for all x0 sufficiently close to x∗. It is often
easier to check for linear stability, which is sufficient (but not necessary) for
stability. We say x∗ is linearly stable if the eigenvalues of F′(x∗) all have
positive real part. Not all steady-state solutions are stable, and algorithms
such as newton armijo are not aware of dynamics and can (and sometimes
do) converge to unstable steady states. We will give an example of this in
Section 7.

The Bratu problem (Bratu 1914) is an example of this. The steady-state
problem is the two-point boundary value problem

−uxx = λ eu, u(0) = u(1) = 0. (4.9)

We would express the boundary value problem as −F(u) = 0 in the function
space. The Fréchet derivative of F(u) is clearly symmetric and positive
definite if λ satisfies

π2 − λ eu > 0.

If λ = 0, the unique solution of (4.9) is u ≡ 0. The Fréchet derivative Fu
at (u, λ) = (0, 0) is −d2/dx2 with homogeneous Dirichlet boundary condi-
tions and is positive definite. Hence the implicit function implies that there
is a solution of (4.9) for sufficiently small λ > 0 and that the solution will
be linearly stable as long as the smallest eigenvalue of Fx is positive. As
the continuation progresses, the eigenvalue will change sign at the singu-
larity of Fx and the solution will lose linear stability (if it exists at all).
The structure of the Bratu problem (and the H-equation as well) implies
that the eigenvalue will change sign when one passes the singularity on the
continuation path (Keller 1987).

One can solve (4.9) explicitly (Ascher, Mattheij and Russell 1995). The
solution is

u(x) = −2 ln

(
cosh[(x− 1/2)θ/2]

cosh(θ/4)

)
,

where θ is the solution of the scalar equation

θ =
√

2λ cosh(θ/4). (4.10)

Similarly to (2.34), (4.10) has two solutions for 0 < λ < λ∗ and no real
solution for λ > λ∗ ≈ 3.52. The continuation plot for the Bratu problem
is similar to that for the H-equation and we invite the reader to do that
computation.
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5. Anderson acceleration

In this section we formulate nonlinear equations as fixed-point problems

x = G(x). (5.1)

Recall from Section 1.3 that the classic method for solving such problems
is Picard iteration:

xk+1 = G(xk). (5.2)

We gave the well-known theory for Picard iteration in Section 1.3.
Anderson acceleration (Anderson 1965) was designed to accelerate Pi-

card iteration for electronic structure computations. Anderson acceleration
differs very little from Pulay mixing (Pulay 1980, Pulay 1982), DIIS (dir-
ect inversion on the iterative subspace: Rohwedder and Schneider 2011,
Schneider, Rohwedder, Neelov and Blauert 2008, Lin and Yang 2013, Kudin,
Scuseria and Cancès 2002) or nonlinear GMRES (Miller 2005, Oosterlee and
Washio 2000, Washio and Oosterlee 1997, Carlson and Miller 1998). The
results in this section apply to all of these algorithms.

We give an example of the kind of problem for which Anderson accel-
eration is widely used. The Kohn–Sham equation (Kohn and Sham 1965,
Hohenberg and Kohn 1964) in density functional theory (DFT) for elec-
tronic structure computations is

Hks[ψj ] ≡ −
1

2
∇2ψj + V (ρ)ψj = λjψj , j = 1, . . . , Ne. (5.3)

Here ψj is the wave function for the jth electron of interest, Hks is the
Kohn–Sham Hamiltonian,

ρ =
N∑
j=1

‖ψj‖22 (5.4)

is the charge density, Ne is the number of electrons of interest, and V is the
charge density-dependent potential. It is useful to express (5.3) in vector
form:

H(ρ)Ψ = ΛΨ,

where Ψ represents the collection of wave functions and Λ is a diagonal
matrix of eigenvalues. In physics computations N can be several thousand.

Self-consistent field (SCF) iteration begins with an initial iterate for ρ;
then, using the given ρ, one solves the linear eigenvalue problem H(ρ)Ψ =
ΛΨ for the Ne eigenvalues and eigenvectors of interest. One then updates
the charge density with (5.4) and continues the iteration until the change
in ρ is sufficiently small. This is a fixed-point iteration for the function ρ,
that is,

ρ← G(ρ),
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which, after discretization, is a fixed-point problem in RNF . For a real-space
formulation, as done in the RMG code (Briggs, Sullivan and Bernholc 1995),
NF would be the number of spatial mesh points if we organized the fixed-
point formulation in this way. However, the charge density often converges
faster than the wave functions and, when it is important to compute the
wave functions, one must formulate the problem in terms of Ψ. In that
case the size of the problem is the product of the number of spatial mesh
points and the number of wave functions N . In that case storage can be
the limiting factor in a computation.

The problem with applying a version of Newton’s method to this prob-
lem is that differentiating the output (the collection of wave functions) of
the eigencomputation, where eigenvalues of high multiplicity are possible, is
difficult in both theory and practice. Therefore, SCF iteration is much more
common for large systems; SCF is, of course, Picard iteration, and Ander-
son acceleration is used in most applications, for example in the Gaussian
computational chemistry code (Frisch et al. 2009) and in the RMG code
(Briggs et al. 1995).

Other applications are stiff dislocation dynamics (Gardner et al. 2015),
fluid–structure interactions (Ganine, Javiya, Hills and Chew 2012), hydro-
logy (Lott, Walker, Woodward and Yang 2012), neutron transport (Willert,
Taitano and Knoll 2014, Toth et al. 2017), thermal radiation transport
(An, Jia and Walker 2017), and multiphysics coupling (Toth 2016, Toth
et al. 2015, Hamilton et al. 2016).

We remind the reader that Anderson acceleration was designed in a con-
text where Newton’s method was not practical because obtaining approx-
imate Jacobians or Jacobian-vector products was (and still is) too costly.
Comparisons indicate that Newton’s method performs better when even
moderately accurate derivative information can be had at reasonable cost
(Hamilton et al. 2016).

5.1. Algorithmic description

anderson(x0,G,m)

x1 = G(x0); F0 = G(x0)− x0

for k = 1, . . . do
Choose mk ≤ min(m, k)
F(xk) = G(xk)− xk
Minimize ‖

∑mk
j=0 α

k
jF(xk−mk+j)‖ subject to∑mk

j=0 α
k
j = 1.

xk+1 = (1− β)
∑mk

j=0 α
k
jxk−mk+j + β

∑mk
j=0 α

k
jG(xk−mk+j)

end for
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Algorithm anderson is a formal description of the method and is the one
we will use for analysis. Implementation is a different matter, and there are
many examples of efficient implementations (Walker and Ni 2011, Toth and
Kelley 2015, Collier et al. 2015, Hindmarsh et al. 2005, Toth and Pawlowski
2015, Toth 2016).

The parameter β is called the mixing parameter. This is the same as
the damping parameter in Picard iteration. In many cases one must damp
Picard iteration to secure convergence. The damped Picard iteration is

xn+1 = (1− β)xn + βG(xn) ≡ Gβ(xn).

Anderson acceleration with mixing parameter β is the same as applying the
algorithm with β = 1 to the map Gβ . Hence there is no loss of generality
in setting β ≡ 1 for analysis.

Anderson maintains a limited history of the iteration of size m+ 1; m is
called the depth. The iteration uses the most recent m+ 1 residuals F(xj)
for k−mk ≤ j ≤ k where mk ≤ min(k,m). The key step in the iteration is
solving the optimization problem

min

∥∥∥∥mk∑
j=0

αkjF(xk−mk+j)

∥∥∥∥ subject to

mk∑
j=0

αkj = 1, (5.5)

for the coefficients {αkj }.
Any vector norm can be used in the optimization problem with no change

in the theory. The optimization problem is easier to solve if one uses the `2-
norm, and that is standard practice. In this case the optimization problem
for the coefficients can be expressed as a linear least-squares problem and
solved very inexpensively. One way to do this is to solve the linear least-
squares problem

min

∥∥∥∥F(xk)−
mk−1∑
j=0

αkj (F(xk−mk+j)− F(xk))

∥∥∥∥2
2

, (5.6)

for {αkj }
mk−1
j=0 . Then one recovers αkmk

by

αkmk
= 1−

mk−1∑
j=0

αkj .

Toth and Kelley (2015) point out that other norms could be used. In
particular, the optimization problem for the coefficients in either the `1- or
`∞-norms can be formulated as a linear programming problem and solved
directly with many codes (CVX Research 2012). However, the least-squares
approach using (5.6) is more efficient, and we will use the `2-norm only in
this article.
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The choice of mk is, in the original form, simply min(m, k). One can adapt
mk as the iteration progresses to, for example, enforce well-conditioning of
the linear least-squares problem (5.6) (Walker and Ni 2011, Toth 2016, An
et al. 2017).

One can show (Fang and Saad 2009, Saad, Chelikowsky and Shontz 2010,
Rohwedder and Schneider 2011, Walker and Ni 2011, Potra and Engler 2013)
that Anderson acceleration is related to multisecant quasi-Newton methods
or, in the case of linear problems, GMRES. None of these results lead to
a convergence proof, even in the linear case, unless the available storage is
large enough to allow GMRES to take a number of iterations equal to the
dimension of the problem.

One result from Walker and Ni (2011) illustrates the power of unlimited
storage. While not the case seen in practice, this result does illustrate
why Anderson acceleration may perform better than Picard iteration in
some cases. Unlike the remainder of the results we present in this section,
contractivity is not necessary.

Theorem 5.1. Let M be an N ×N matrix with A = I−M non-singular.
Let m ≥ N , b and x0 be given. Let xGk be the kth GMRES iteration for
Ax = b with x0 as the initial iterate. Let xak be the kth Anderson(m)
iteration for x = G(x) ≡ Mx + b with x0 as the initial iterate. Suppose
that for some k > 0

• ‖AxGk−1 − b‖ > 0 and

• ‖AxGj−1 − b‖ > ‖AxGj − b‖ for all 0 < j < k.

Then xAk+1 = G(xGk ).

This result says that, under most circumstances, Anderson acceleration
with m ≥ N performs exactly as well as GMRES and that the analysis of
preconditioning is the same as for GMRES. GMRES is well known (Nevan-
linna 1993, Campbell, Ipsen, Kelley and Meyer 1996a, Campbell et al.
1996b) to converge rapidly for discretizations of second-kind Fredholm in-
tegral equations, for example.

5.2. Convergence theory

Toth and Kelley (2015) has the first convergence analysis of the method as
used in practice. The central idea in Toth and Kelley (2015) was to show
that Anderson acceleration does no harm rather than to prove a general
convergence result. The results are consistent with the observations from
computational chemistry (Foresman and Frisch 1996). For example, a good
initial iterate is needed for convergence in many cases.
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5.2.1. Linear problems
We will begin with an analysis of the linear case. The convergence theory,
at least as it stands today, only shows that Anderson acceleration does not
degrade the convergence of Picard iteration. However, in practice Anderson
acceleration is often (but not always) much better. There is at present no
satisfactory characterization of problems for which Anderson is better.

Theorem 5.2. Let M be an N × N matrix with ‖M‖ = c < 1. Let
m ≥ 0. Then Anderson(m) acceleration, when applied to G(x) = Mx + b,
converges to the solution x∗ = (I−M)−1b. Moreover, the residuals F(x) =
b− (I−M)x converge to zero with a q-factor no larger than c.

Proof. In this proof the optimization problem is used in an important way.
Given xk, we note that since

∑
αkj = 1, the new residual is

F(xk+1) = b− (I −M)xk+1

=

mk∑
j=0

αkj [b− (I −M)(b+ Mxk−mk+j)]

=

mk∑
j=0

αkjM[b− (I −M)xk−mk+j ]

= M

mk∑
j=0

αkjF(xk−mk+j).

We take norms and use ‖M‖ = c to obtain

‖F(xk+1)‖ ≤ c
∥∥∥∥mk∑
j=0

αjF(xk−mk+j)

∥∥∥∥.
Optimality implies that∥∥∥∥mk∑

j=0

αjF(xk−mk+j)

∥∥∥∥ ≤ ‖F(xk)‖.

Hence

‖F(xk+1)‖ ≤ c‖F(xk)‖, (5.7)

as asserted.

One might think that the analysis could proceed like that for Newton’s
method in that the result for the linear problem (convergence in one iteration
for Newton) would imply a result for the nonlinear problem after a Taylor
expansion if the initial iterate were accurate enough to neglect the high-
order terms. In fact, that analogy is correct. We will illustrate the point
with two theorems from Toth and Kelley (2015).
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In the special case m = 1, one can solve the optimization problem ana-
lytically. One can use this to show that (5.7) holds for Anderson(1) in the
nonlinear case if the initial iterate is sufficiently near the solution. The as-
sumption of continuous differentiability is weaker than the one in Toth and
Kelley (2015) and is also used in Chen and Kelley (2017).

5.2.2. The special case m = 1
If m = 1 we need only assume that G is a continuously differentiable con-
traction to obtain q-linear convergence of the residuals.

Assumption 5.3. G has a fixed point x∗.

• G is continuously differentiable in the ball B(x∗, ρ̂) = {x | ‖e‖ ≤ ρ̂} for
some ρ̂ > 0.

• There is c ∈ (0, 1) such that for all x,y ∈ B(x∗, ρ̂), ‖G(x) −G(y)‖ ≤
c‖x− y‖.

Theorem 5.4 is a generalization of a result from Toth and Kelley (2015)
with stronger convergence and slightly weaker assumptions.

Theorem 5.4. Assume that Assumption 5.3 holds. Then if ‖e0‖ is suf-
ficiently small, the Anderson(1) residuals with `2-optimization converge q-
linearly. Moreover,

lim sup
k→∞

‖F(xk+1)‖
‖F(xk)‖

≤ c. (5.8)

Proof. We will express the iteration as

xk+1 = (1− αk)G(xk) + αkG(xk−1), (5.9)

and note that

αk =
F(xk)

T (F(xk)− F(xk−1))

‖F(xk)− F(xk−1)‖2
. (5.10)

Now define

ak = G(xk+1)−G((1− αk)xk + αkxk−1)

and

bk = G((1− αk)xk + αkxk−1)− xk+1.

Clearly

F(xk+1) = G(xk+1)− xk+1 = ak + bk. (5.11)

We will obtain an estimate of F(xk+1) by estimating ak and bk separately.
By definition of the Anderson iteration (5.9) and contractivity of G,

‖ak‖ = ‖G(xk+1)−G((1− αk)xk + αkxk−1)‖
≤ c‖xk+1 − (1− αk)xk − αkxk−1‖
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260 C. T. Kelley

= c‖(1− αK)(G(xK)− xK)− αK(G(xK−1)− xK−1)‖
= c‖(1− αk)F(xk)− αkF(xk−1)‖ ≤ c‖F(xk)‖, (5.12)

where the last inequality follows from the optimality property of the coeffi-
cients.

We now estimate bk. Now let

δk = xk−1 − xk.

To estimate bk we note that

bk = G((1− αk)xk + αkxk−1)− (1− αk)G(xk)− αkG(xk−1)

= G(xk + αkδk)−G(xk) + αk(G(xk)−G(xk−1))

=

∫ 1

0
G′(xk + tαkδK)αkδk dt− αK

∫ 1

0
G′(xk + tδk)δk dt

= αk
∫ 1

0
[G′(xk + tαkδk)−G′(xk + tδk)]δk dt. (5.13)

Since G′ is continuous in B(x∗, ρ), there is a non-decreasing function
η ∈ C[0,∞) with η(0) = 0 so that

‖G′(x)−G′(x∗)‖ ≤ η(‖e‖) (5.14)

for all x ∈ B(x∗, ρ). Hence, if xk and xk−1 are both in B(x∗, ρ) (which is
certainly true if k = 1), then

‖bk‖ ≤ 2η(‖ek‖+ ‖δk‖)‖|αk|‖δk‖. (5.15)

Because m = 1, it is not difficult to estimate αk. Clearly,

F(xk)− F(xk−1) = G(xk)−G(xk−1) + δk = δk −
∫ 1

0
G′(xk−1 − tδk)δk dt

=

(
I −

∫ 1

0
G′(xk−1 − tδk) dt

)
δk.

Since ‖G′(u)‖ ≤ c for all u ∈ B(x∗, ρ), we have

‖δk‖ ≤ ‖F(xk)− F(xk−1)‖/(1− c). (5.16)

Combine (5.16) and (5.10) to obtain

|αk|‖δk‖ ≤
‖F(xk)‖

‖F(xk)− F(xk−1)‖
‖δk‖ ≤

‖F(xk)‖
1− c

. (5.17)

Hence

‖F(xk+1)‖ ≤ ‖F(xk)‖(c+ 2η(‖ek‖+ ‖δk‖)‖). (5.18)

So, given c < ĉ < 1, we may reduce ρ if needed so that

‖F(xk+1)‖ ≤ ĉ‖F(xk)‖. (5.19)
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We complete the proof by combining (5.18) and (5.19) to show that

‖F(xk+1)‖ ≤ ‖F(xk)‖(c+ o(1))

as k →∞.

5.2.3. Local convergence for general m

We must either assume or arrange that the `1-norm of the coefficients be
uniformly bounded to prove local convergence for m > 1 or for any norm
other than the `2-norm. In addition, the convergence is r-linear rather than
q-linear. We will state Chen and Kelley’s (2017) extension of the local
convergence result from Toth and Kelley (2015). We refer to those papers
for the proof.

Theorem 5.5. Assume that Assumption 5.3 holds. Assume that there is
Mα such that, for all k ≥ 0,

mk∑
j=1

|αj | ≤Mα. (5.20)

Then if x0 is sufficiently near to x∗, the Anderson iterations converge, and

lim sup
k→∞

(
‖F(xk)‖
‖F(x0)‖

)1/k

≤ c. (5.21)

The assumption (5.20) that the `1-norm of the coefficients is bounded
can be enforced within the iteration by controlling mk. One way to do this
is to reduce mk if the `1-norm of the coefficients or (in the `2-norm case)
the conditioning of the least-squares problem (5.6) exceeds a predetermined
bound. Walker and Ni (2011) and An et al. (2017) advocate limiting the
condition number of the least-squares problem (5.6). Toth (2016) shows
that if one does this the r-linear convergence improves to q-linear. However,
the performance in practice of methods that enforce (5.20) is not always
better than the original version. In Section 5.3 we discuss another approach
which requires that the coefficients be non-negative (so Mα ≡ 1) as a way
to globalize convergence.

5.2.4. H-equation example

We return to the H-equation with some of the results from Toth and Kelley
(2015). This computation exposes one of the many mysteries in Anderson
acceleration.

We begin with a look at Newton–GMRES and Picard iteration, which are
well known to converge even in the singular c = 1 case. If c = 1 the fixed-
point map is not a contraction and, as we have seen, the Jacobian is singular
at the solution. However, if the initial iterate is well chosen (H0(µ) ≡ 1 is a
good choice), both the Picard and Newton iterations will converge.
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Table 5.1. Function evaluations for Newton–GMRES and
fixed-point iteration.

Newton–GMRES Fixed point

ω 0.5 0.99 1.0 0.5 0.99 1.0

F s 12 18 49 11 75 23 970

Table 5.2. Iteration statistics for Anderson(m).

m = 1 m = 2 m = 5

ω ITS κ Smax ITS κ Smax ITS κ Smax

0.50 7 1.0×100 1.4 6 2.9×103 1.4 6 2.5×1010 1.4
0.99 11 1.0×100 4.0 10 9.8×103 5.4 12 1.6×1011 5.4
1.00 21 1.0×100 3.0 16 2.9×103 14.3 27 8.0×109 14.8

The computations in this section are from an N = 500 point mesh. We
terminated the iterations when ‖F(hn)‖ ≤ 10−8‖F(h0)‖. Table 5.1 reports
cost in terms of function evaluations for both Newton–GMRES and Picard
iterations for three values if ω. One can see the effect of the singular Jac-
obian for both Newton–GMRES and Picard iteration. In the statistics for
Newton–GMRES we count both the function evaluations in the nonlinear
iterations and those used in a finite-difference Jacobian-vector product.

In Table 5.2 we report the cost of Anderson(m) with m = 1, 2, 5 for
the same problems. We tabulate the number of iterations ITS needed to
terminate, the maximum condition number κ of the least-squares problem,
and the maximum `1-norm Smax of the coefficients. Smax is not large and,
at least for this problem, the assumption that (5.20) holds is reasonable.

Anderson(m) does far better for these problems than the theory predicts,
costing less than even Newton–GMRES. Note that each iteration of Ander-
son costs a single function evaluation. For m = 5 the least-squares problems
become very ill-conditioned, which is unsurprising given that G′ is an integ-
ral operator. This ill-conditioning does not cause the iteration to fail, but
does, especially when ω = 1, increase the cost.

In Figure 5.1 we plot the residual histories for Anderson(1) and the three
values of ω. The reader should compare Figure 5.1 to Figure 2.5.

Toth et al. (2017) contains mesh independence results for Anderson ac-
celeration similar to those in Section 3.3.
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Figure 5.1. Anderson(1) for the H-equation example.

5.3. The EDIIS globalization

Anderson acceleration performs poorly for some applications. One example
is electronic structure computations for metallic systems where the HOMO–
LUMO gap is small (Kudin, Scuseria and Cancès 2002). In such cases one
must use a small mixing parameter to ensure convergence. However, a small
mixing parameter degrades the performance of the iteration. In addition, an
accurate initial iterate is often necessary, and finding an acceptable initial
iterate is often problematic.

One attempt to solve these problems for small systems is the EDIIS (en-
ergy DIIS) algorithm from Kudin et al. (2002). This is the form of An-
derson acceleration in the Gaussian computational chemistry code (Frisch
et al. 2009). EDIIS differs from Anderson acceleration in that the fixed-point
problem is designed differently to minimize energy and a non-negativity con-
straint on the coefficients. So, the optimization problem becomes

min

∥∥∥∥mk∑
j=0

αkjFk−mk+j

∥∥∥∥ subject to

mk∑
j=0

αkj = 1, αkj ≥ 0. (5.22)

The optimization problem (5.22) for EDIIS is much harder than the lin-
ear least-squares problem (5.6) in algorithm anderson. The approach of
Kudin et al. (2002) is a direct examination of the boundary of the feasible
simplex, which is not practical for a depth much greater than m = 3. Since
m is small in practice, expressing the optimization problem as a bound-
constrained quadratic program is an efficient alternative. Moré and Toraldo
(1991) survey the literature on this topic. For example, a bound-constrained
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quadratic programming code such as the MINQ code (Neumaier 1998) is
a reasonable choice. However, this approach squares the condition num-
ber. The classic method from Golub and Saunders (1969) uses an active set
method and QR factorization to avoid this.

In Chen and Kelley (2017) we prove that adding the non-negativity con-
straint condition to the optimization makes the algorithm globally conver-
gent. Theorem 5.6 and its proof make that precise.

Theorem 5.6. Let G be a contraction on a convex D ⊂ RN with con-
tractivity constant c. Let x∗ be the unique fixed point of g in D. Then, for
any x0 ∈ D, EDIIS(m) converges to x∗ r-linearly with r-factor

ĉ = c1/(m+1).

In fact,

‖ek‖ ≤ ĉk‖e0‖. (5.23)

Proof. The proof does not use the optimality condition and only requires
that the iteration {xk} have the form

xk+1 =

mk∑
j=0

αkjG(xk−mk+j), (5.24)

where mk ≤ m, αkj ≥ 0, and
∑mk

j=0 α
k
j = 1.

We induct on k. Clearly (5.23) holds for both mk = 0, by definition, and
k = mk = 1 because the iteration in that case is a single Picard iteration.
Assume that the result holds for k ≤ K. Then (5.24) and

∑mk
j=0 α

k
j = 1

imply that

eK+1 =

mk∑
j=0

αkj (G(xk−mk+j)− x∗).

Non-negativity of the αk then implies that

‖eK+1‖ ≤
mK∑
j=0

αKj ‖G(xK−mK+j)− x∗‖

≤
mK∑
j=0

αKj c‖xK−mK+j − x∗‖

≤ c
mK∑
j=0

αKj ĉ
K−mK+j‖e0‖ ≤ ĉK+1(cĉ−m−1) ≤ ĉK+1.

The theorem says the iteration history of m vectors will eventually be
arbitrarily close to x∗. Hence restarting the iteration after sufficiently many
EDIIS iterations will result in local convergence at the rate predicted by
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Theorem 5.5, which is better than (5.23). However, it is not clear how
to decide when to restart. Theorem 5.7, the local convergence result from
Chen and Kelley (2017), says that one can simply continue with the EDIIS
iteration and the local convergence estimate will hold.

Theorem 5.7. Let the assumptions of Theorem 5.6 hold. Then the EDIIS
algorithm converges to x∗ and (5.21) holds.

The proof of Theorem 5.7 depends strongly on Theorem 5.6 to generate
good initial data and the constrained optimization problem to guarantee
that the `1-norm of the coefficients is bounded.

6. Newton’s method for semi-smooth functions

The results in this section generalize Newton’s method in a way that does
not require differentiability of F. Many of these results extend to a function
space setting, but only with some significant modifications in the analysis.
Several papers, for example those of Chen, Nashed and Qi (2001), Hinter-
müller and Ulbrich (2003) and Ulbrich (2011), generalize these ideas to
function spaces.

6.1. Generalized derivatives and semi-smooth functions

We begin with a idealized version of Newton’s method for Lipschitz con-
tinuous functions. Let Ω ⊂ RN be open. Suppose F : Ω → RN is locally
Lipschitz continuous. Rademacher’s theorem says that F is Fréchet differen-
tiable almost everywhere. The proof of this remarkable result can be found
in Federer (1969, Theorem 3.1.6).

We let DF denote the set of points where F is Fréchet differentiable. The
generalized Jacobian (Clarke 1990) of F at u ∈ RN is the set

∂F(u) = co
{

lim
uj→u;uj∈DF

F′(uj)
}
, (6.1)

where co denotes the closed convex hull.
Consider the scalar function f(x) = |x|. The function is differentiable

except at x = 0. At x = 0, where f is not differentiable, the generalized
derivative is the interval [−1, 1].

The chain rule is not a trivial matter for non-smooth problems, and there
are several variations. As an example we will state Theorem 2.6.6 from
Clarke (1990) and one of its corollaries. We state the results using the
formulation from Hintermüller (2010).

In the theorem F ◦G will denote the composition F ◦G(x) ≡ F(G(x)).

Theorem 6.1. Let Q = G ◦F, where F : RN → RN is Lipschitz continu-
ous in a neighbourhood of x and G : RN → RP is Lipschitz continuous in a
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266 C. T. Kelley

neighbourhood of F(x). Then Q is Lipschitz continuous in a neighbourhood
of x and, for all v ∈ RN ,

∂Q(x)v ⊂ co{∂G(F(x))∂F(x)v}. (6.2)

Moreover, if G is continuously differentiable, then the inclusion is an equal-
ity, that is, for all v ∈ RN ,

∂Q(x)v = G′(F(x))∂F(x)v. (6.3)

If G is real-valued (P = 1), then the vector v can be omitted from (6.2)
and (6.3).

One needs more than Lipschitz continuity to properly generalize conver-
gence theorems for Newton’s method. Mifflin (1977) introduced the concept
of semi-smoothness in the context of optimization. The extension to non-
linear equations in Qi and Sun (1993) was the beginning of a very lively
research area.

We will use one of the several equivalent definitions from Qi and Sun
(1993).

Definition 6.2. F is semi-smooth at x ∈ RN if F is locally Lipschitz
continuous and, for all w ∈ RN and V ∈ ∂F(x + w),

F(x + w)− F(x)−Vw = o(‖w‖) (6.4)

as w→ 0. F is semi-smooth of order p if

F(x + w)− F(x)−Vw = O(‖w‖1+p) (6.5)

as w→ 0.

There is a subtle and important point in the definition. The operator
V is in ∂F(x + w), not, as one might expect, in ∂F(x). This point is the
critical difference between semi-smoothness and differentiability.

We will make use of a few facts from Mifflin (1977), Qi and Sun (1993)
and Clarke (1990).

• If F is semi-smooth at x, then the directional derivatives dF(x : u) (2.29)
exist for all directions u.

• The composition of two semi-smooth functions is semi-smooth.

6.2. Local convergence of Newton’s method

We use Newton’s method via

x+ = xc −V−1c F(xc), (6.6)

where Vc is any member of ∂F(xc). We will state the results in terms of an
inexact formulation,

x+ = xc + s, (6.7)
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where

‖Vcs + F(xc)‖ ≤ ηc‖F(xc)‖ (6.8)

and Vc ∈ ∂F(xc). This iteration does not converge, even locally, for general
Lipschitz functions. The iteration does converge for semi-smooth functions.
We will state a convergence theorem which combines results from Qi and
Sun (1993), Pang and Qi (1993), Martinez and Qi (1995) and Facchinei,
Fischer and Kanzow (1996), and extends Theorem 2.4 to the semi-smooth
case.

We must formulate an analogue to the standard assumptions and then
use that to argue that the Newton sequence exists if the initial iterate is
sufficiently near a solution x∗.

Assumption 6.3. There is x∗ ∈ RN and ρ∗ > 0 such that

• F(x∗) = 0;

• F is semi-smooth in B(x∗, ρ∗);

• every element of ∂F(x∗) is non-singular.

In the classical case one uses Lipschitz continuity of F′ to argue that F′(x)
is non-singular for all x sufficiently near x∗ and then to prove quadratic
convergence. In fact, only local Lipschitz continuity is needed for the first
assertion (Qi and Sun 1993). We state this fact formally as Lemma 6.4.

Lemma 6.4. Let F be Lipschitz continuous in a neighbourhood of x and
let all matrices in ∂F(x) be non-singular. Then there are ρ and C > 0 such
that for all y ∈ B(x, ρ) and all V ∈ ∂F(y)

‖V−1‖ ≤ C. (6.9)

Theorem 6.5. Let F : RN → RN with F(x∗) = 0. Assume that F is semi-
smooth at x∗ and that all matrices in ∂F(x∗) are non-singular. Then there
are η̄, δ̄, K > 0 such that if x0 ∈ B(x∗, δ̄) and ηn ≤ η̄, then the generalized
inexact Newton iteration (6.7) converges to x∗ and

‖e+‖ ≤ Kηc‖ec‖+ o(‖ec‖).

Moreover, if F is semi-smooth of order 0 < p ≤ 1 at x∗, then

‖e+‖ ≤ K(ηc‖ec‖+ ‖ec‖1+p).

Proof. We will prove the special case where ηn ≡ 0 and F is semi-smooth
of order 1. We refer to Qi and Sun (1993), Pang and Qi (1993), Martinez
and Qi (1995) and Facchinei et al. (1996) for the complete analysis. We will
follow the formulation in Hintermüller (2010).

Let α ∈ (0, 1) be arbitrary. We will proceed as we did in the proof of the
classical theorem (Theorem 2.3) by first showing that the error converges
to zero q-linearly with q-factor ≤ α. We will then extract the quadratic
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convergence from semi-smoothness of order 1. Let xc be near enough to x∗

so that (6.9) holds. There is Vc ∈ ∂F(xc) such that

e+ = ec −V−1c F(xc) = V−1c (Vcec − (F(xc)− F(x∗)). (6.10)

Semi-smoothness of order 1 implies that

Vcec − (F(xc)− F(x∗)) = O(‖ec‖2) (6.11)

for xc sufficiently near x∗. In particular, we may require xc to be near
enough to x∗ so that

‖Vcec − (F(xc)− F(x∗))‖ ≤ α

C
‖ec‖,

where C is the bound on ‖V−1‖ from (6.9). Hence (6.10) implies that
‖e+‖ ≤ α‖ec‖, proving convergence. Quadratic convergence then follows
from (6.11).

Qi and Sun (1993) also prove a generalization of the Kantorovich theorem
for semi-smooth functions. The reader should compare this theorem to
Theorem 3.2.

Theorem 6.6. Let F be locally Lipschitz and semi-smooth on B(x0, r).
Suppose there are β, γ, δ > 0 such that for any V ∈ ∂F(x) and x,y ∈
B(x0, r) we have:

• V is non-singular and ‖V−1‖ ≤ β;

• ‖V(x− y)− dF(x : x− y)‖ ≤ γ‖y − x‖;
• ‖F(x)−V(y)− dF(x : x− y)‖ ≤ δγ‖y − x‖;
• α = β(γ + δ) < 1, and

• β‖F(x0)‖ ≤ r(1− α).

Then the semi-smooth Newton iteration

xn+1 = xn −V−1n F(xn),

with Vn ∈ ∂F(xn), remains in B(x0, r), converges to a solution x∗, and

‖xn − x∗‖ ≤ α

1− α
‖xn − xn−1‖.

6.3. Global convergence

Hintermüller (2010), motivated by problems in optimal control, presents
examples for which semi-smooth Newton converges from any starting point.
Those examples are a special case and in general one cannot expect the ini-
tial iterate to be accurate enough for the local convergence theory to hold.
While there is no globalization method that applies to all semi-smooth prob-
lems, there are some easy-to-implement approaches which can be used for
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many classes of problems. We describe some such methods in Sections 6.3.1,
6.4, and 7.1.

Trust region methods have been applied to semi-smooth problems in func-
tion spaces (Heinkenschloss, Ulbrich and Ulbrich 1999, Ulbrich 2001), espe-
cially those connected to constrained optimal control problems for partial
differential equations.

6.3.1. Line search methods for complementarity problems
For smooth problems the line search methods from Section 2.7 are by far the
most common solution to the problem of a poor initial iterate. Line search
methods have only succeeded for limited classes of semi-smooth equations
(De Luca, Facchinei and Kanzow 1996, Jiang and Qi 1997). Nonlinear
complementarity problems are an example of such problems. A nonlinear
complementarity problem is to find x such that

x ≥ 0, P(x) ≥ 0, xTP(x) = 0. (6.12)

In (6.12) the inequalities are componentwise and P is continuously differ-
entiable. The approach is to transform (6.12) into a semi-smooth nonlinear
equation.

The method in De Luca et al. (1996) uses the Fischer–Burmeister function

φ(t, s) =
√
t2 + s2 − (t+ s) (6.13)

(Fischer 1992). It is easy to show that φ(t, s) = 0 if and only if t ≥ 0,
s ≥ 0 and st = 0. We extend the definition φ from R2 to RN × RN via
componentwise application to obtain

Φ(x,y) ≡


φ(x1, y1)
φ(x2, y2)

...
φ(xN , yN )

.
Then it is easy to verify that (6.12) is equivalent to the semi-smooth equation

F(x) ≡ Φ(x,P(x)) = 0. (6.14)

We compute ∂F(x) to show how one does this in cases where the com-
ponentwise application of a semi-smooth scalar function is composed with
a smooth function. De Luca et al. (1996) have a very nice description. The
goal is to compute J ∈ ∂F(x). Any J computed with algorithm compute J
will be in ∂F(x).

Here, as in Section 2, ui is the unit vector in the ith coordinate direction.
De Luca et al. (1996) propose an algorithm that differs from algorithm

newton armijo in only a few ways. The descent direction d is the solu-
tion of

Jd = −F(x),
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compute J

Set A = {i | xi = 0 = pi(x)}.
Let z ∈ RN be such that zi 6= 0 for all i ∈ A.
For i 6∈ A set the ith row of J to be(

xi√
x2i + pi(x)2

− 1

)
ui +

(
pi(x)√

x2i + pi(x)2
− 1

)
∇pi(x).

For i ∈ A set the ith row of J to be(
zi√

z2i + (∇pi(x)T z)2
− 1

)
ui +

(
∇pi(x)zi√

z2i + (∇pi(x)T z)2
− 1

)
∇pi(x).

where J is any element of ∂F(x). In algorithm newton armijo we asked for
sufficient decrease of ‖F‖. The analysis is more subtle in the non-smooth
case because ‖F‖ is not differentiable. The algorithm in De Luca et al.
(1996) resolves this problem by observing that

Ψ(x) = ‖F(x)‖22
is smooth and d is a descent direction for Ψ because

∇Ψ(x)d = −2‖F(x)‖22.

Now one can proceed as in the smooth case. The smoothness of Ψ implies
that d is a descent direction for ‖F‖ and is key to the success of the line
search. All of these properties depend on the special structure of the non-
linear complementarity problem and the Fischer–Burmeister function. The
convergence theory is subtle and more complicated than Theorem 2.6.

The algorithm in De Luca et al. (1996) includes tests for singularity or
ill-conditioning of J, thereby explicitly avoiding one of the failure modes
in Theorem 2.6. One result, which is very like Theorem 2.6, is that if the
sequence of iterations is bounded, one limit point of that sequence x∗ is a
solution of F(x) = 0, and P is Lipschitz continuously differentiable, then
xn → x∗ q-quadratically.

6.4. Smoothing function methods

Another more general way to globalize the semi-smooth Newton iteration
is the smoothing function approach. The idea was developed in the context
of variational inequalities (Chen, Qi and Sun 1998, Chen and Ye 1999) and
generalized to more general nonlinearities and infinite dimensions in Chen
et al. (2001). Here we approximate F(x) by a family of functions F̃(x, ε),
where F̃ is a Lipschitz continuously differentiable function of x for ε > 0
and F̃(x, 0) = F̃(x). We require that F̃ satisfy the smoothing approximation
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property

‖F̃(x, ε)− F(x)‖ ≤ µε (6.15)

for some µ > 0.
For example, one can smooth the Fischer–Burmeister function (6.13) with

φ(t, s, ε) =
√
t2 + s2 + ε2 − (t+ s).

Chen (2000) discusses several ways to apply smoothing methods to comple-
mentarity problems.

The iteration is

x+ = xc + λcdc, (6.16)

where

dc = −F̃′(xc, εc)
−1F(x). (6.17)

In (6.16) F̃′ is the Jacobian in the x variables. The stepsize λ satisfies an
interesting hybrid sufficient decrease condition

‖F̃(xc + λdc, εc)‖2 ≤ ‖F̃(xc, εc)‖2 − αλ‖F(xc)‖2.
The algorithms have several ways to update ε. In Chen et al. (1998) the
update can be one of ε+ = O(‖F(x+)‖), ε+ = εc/2 or ε+ = εc, depending
on the rate of decrease in F(x).

One can obtain superlinear convergence if the approximations satisfy the
Jacobian consistency property,

lim
ε→0

inf
V∈∂F(x)

‖F̃′(x, ε)−V‖ = 0 (6.18)

for all x.
Smoothing methods are, at least for local convergence, related to the

splitting methods from Chen and Yamamoto (1989) and their measure-
theoretic extensions in Heinkenschloß, Kelley and Tran (1992), Kelley (1994)
and Kelley and Sachs (1994). These methods apply to problems for which
the generalized Jacobian can be well approximated by the Jacobian J of a
nearby smooth map. The iteration is

x+ = xc − J(xc)
−1F(x).

Coffey, McMullan, Kelley and McRae (2003b) consider one example of such
a problem where F is a second-order approximation to the Euler equations.
The non-smoothness arises from a flux limiter. The map J is the Jacobian
for a smooth first-order approximation of the same problem. Coffey et al.
(2003b) globalized the iteration with pseudo-transient continuation.

Smoothing methods have also been globalized with trust region methods.
Yang and Qi (2005) approach the nonlinear complementarity problem in
this way. In Section 7.2 we will globalize a semi-smooth equation with a
different kind of continuation.
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7. Pseudo-transient continuation

Pseudo-transient continuation (ΨTC) is an algorithm for finding stable
steady-state solutions of time-dependent equations, such as

ẋ = −F(x). (7.1)

In (7.1) ẋ = dx/dt and the minus sign before F is a convention. A steady-
state solution x∗ is time-independent, so ẋ∗ = 0. The solution is stable if
the solution of the initial value problem for (7.1) with initial data sufficiently
near x∗ converges to x∗ as t→∞. We will consider only linear stability and
ask that the eigenvalues of F′(x∗) be positive. One might think that one
could simply apply Newton’s method to the nonlinear equation F(x) = 0
and solve the problem, but that would be wrong. The reason is that not all
solutions of F(x) = 0 are dynamically stable.

A simple example will illustrate the ideas. Consider the parameter-depen-
dent scalar equation

ẋ = −(x3 − λx). (7.2)

When λ ≤ 0, the function x ≡ 0 is the only steady-state solution and it
is stable since f ′(0) = −λ ≥ 0. When λ > 0, however, there are three
steady-state solutions,

x ≡ ±
√
λ and x ≡ 0.

The two non-zero solutions are stable and x ≡ 0 is not. If one solves f(x) = 0
with Newton’s method, the iteration is

x+ =
−2x3c
λ− 3x2c

.

Hence Newton’s method will converge to the unstable solution if the initial
iterate x0 is sufficiently small.

The solution of the initial value problem, on the other hand, will converge
to one of the stable steady-state solutions if x(0) 6= 0. One way to find the
stable steady-state solution would be numerical integration with Euler’s
method:

xk+1 = xk − hf(xk) = xk − h(x3k − λxk) = (1 + hλ)xk − hx3k.

It is easy to see that xk+1 > xk if xk > 0 is small. Hence the numerical
integration converges to the stable steady-state solution for sufficiently small
h. While this would succeed in finding a stable steady state, the cost would
be an accurate simulation in time, which may not be of interest if only the
steady-state solution is needed.

ΨTC is a way to move from the time-accurate simulation to a New-
ton iteration by managing a pseudo-timestep, which one can think of as a
continuation parameter (or a trust region parameter: Higham 1996). The
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method updates the timestep as the iteration progresses with the objective
of making the iteration converge superlinearly near the solution. ΨTC has
been applied in aerodynamics (Venkatakrishnan 1989), hydrology (Farthing
et al. 2003), magnetohydrodynamics (Knoll and Rider 1997), radiation
transport (Shestakov and Milovich 2000), reacting flow (Smooke, Mitchell
and Keyes 1989), structural analysis (Kant and Patel 1990) and circuit sim-
ulation (Grasser 1999) to overcome the problem with Newton’s method we
see in the example. Newton’s method, even with a line search, can con-
verge to non-physical solutions or unstable local minima of the norm of the
steady-state residual (Keyes and Smooke 1987, Coffey et al. 2003b). This
is particularly the case when the solution has complex features, such as
shocks or discontinuities, that are not present in the initial iterate (Orkwis
and McRae 1992).

We will express the method in terms of an initial value problem for (7.1):

ẋ = −V−1F(x), x(0) = x0. (7.3)

The matrix V plays the role of a scaling or preconditioning operator. We
seek to find the stable steady-state solution of (7.3) if it exists. With this
viewpoint, ΨTC is not a general-purpose nonlinear solver, but rather a tool
for dynamics. If there is no stable steady-state solution, ΨTC may well
diverge. We will, therefore, assume that a stable steady-state solution of
(7.3) exists.

In this article we will focus on one version of the algorithm,

xn+1 = xn − (δ−1n V + F′(xn))−1F(xn), (7.4)

and its inexact formulation

xn+1 = xn + sn,

‖(δ−1n V + F′(xn))sn + F(xn)‖ ≤ η‖F(xn)‖.
(7.5)

A typical choice for δn, especially in aerodynamics (Keyes 1995, Orkwis
and McRae 1992, Venkatakrishnan 1989), is the ‘switched evolution relaxa-
tion’ (SER) method (Mulder and Leer 1985),

δn = δn−1‖F(xn−1)‖/‖F(xn)‖ = δ0‖F(x0)‖/‖F(xn)‖. (7.6)

It is often useful to bound δn from above (Coffey, Kelley and Keyes 2003a,
Fowler and Kelley 2005, Kelley and Keyes 1998) and replace (7.6) with

δn = φ

(
δn−1

‖F(xn−1)‖
‖F(xn)‖

)
. (7.7)

In (7.7),

φ(ξ) =

{
ξ ξ ≤ ξt,
δmax ξ > ξt,

(7.8)
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where either ξt = δmax or ξt <∞ and δmax =∞.
We present the theorem for ODE dynamics from Kelley and Keyes (1998)

in detail. ΨTC has also been applied to problems with differential algebraic
dynamics where some components of x are not differentiated in the con-
tinuous formulation (Landau and Lifschitz 1959, Ern, Giovangigli, Keyes
and Smooke 1994) and also to problems with non-smooth dynamics that
arise from the application of flux-limiters in computational fluid dynamics
(Coffey et al. 2003b, Fowler and Kelley 2005). In Section 7.1 we will give an
example of a problem with non-smooth differentiable algebraic dynamics.

We will use the formal assumptions from Kelley and Keyes (1998). The
assumptions are technical. Simply put, they say that x∗ is a stable steady-
state solution and that the standard assumptions (Assumption 2.1) hold.

Assumption 7.1.

• The initial value problem (7.3) has a solution x(t) and

lim
t→∞

x(t) = x∗.

• F is Lipschitz continuously differentiable in the set

S = ∪t≥0{x | ‖x− x(t)‖ ≤ ∆}

for some ∆ > 0.

• There is M > 0 such that ‖F′(x)‖ ≤M for all x ∈ S.

• There are ε and β such that

‖(I− δV−1F′(x))−1‖ ≤ (1 + βδ)−1

for all δ > 0.

Theorem 7.2. Let Assumption 7.1 hold and let the update for δ be given
by (7.7). Let {xn} be the iteration (7.5). Then there are η̄ and δ̄ such that
if δ0 ≤ δ̄ and ηn ≤ η̄ for all n, then xn → x∗ and δn → δmax. Moreover, for
n sufficiently large,

‖en+1‖ = O((ηn + δ−1n )‖en‖+ ‖en‖2).

7.1. Extensions to DAE and semi-smooth dynamics

Coffey et al. (2003a, 2003b), Kelley et al. (2008), Farthing et al. (2003) and
Fowler and Kelley (2005) extended the convergence results on ΨTC to the
case of semi-explicit index-one differential algebraic equations (DAE):

D

(
u
v

)′
= −

(
F1(u,v)
F2(u,v)

)
≡ −F(x), x(0) = x0. (7.9)

Here

x = (uT ,vT )T ∈ C([0,∞],RN1+N2).
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The functions u : [0,∞]→ RN1 and v : [0,∞]→ RN2 are to be found. The
differential variables u and the algebraic variables v are clearly separated in
the semi-explicit case where

D =

(
D11 0

0 0

)
,

where D11 is a non-singular scaling matrix. We assume that the Jacobian
of F2 in v is non-singular (index one). A good general reference for DAEs
is the book by Brenan, Campbell and Petzold (1996).

We assume the initial data for (7.9) are consistent (i.e. F2(u(0),v(0)) =
0), and seek the solution x∗ to F(x∗) = 0 that satisfies

lim
t→∞

x(t) = x∗.

If (7.9) is a discretization in space of a PDE, and the initial data are far
from the desired steady state, the application of a conventional method,
such as a line search (Kelley 1995), to the time-independent equation

F(x) = 0

may fail to converge. Possible failure modes (Coffey et al. 2003b) are stag-
nation of the iteration at a singularity of F′, the Jacobian of F, or finding
a solution other than x∗.

The ΨTC iteration for these dynamics in the smooth case is

xn+1 = xn − (δ−1n D + F′(xn))−1F(xn) (7.10)

(Coffey et al. 2003a). The difference is only that D is singular and F has the
special structure of (7.9). The assumption that the DAE has index one is all
one needs to obtain a convergence result exactly like Theorem 7.2. For the
non-smooth case (Fowler and Kelley 2005), one must replace the Jacobians
in the algorithm and in the definition of index one by the appropriate semi-
smooth generalized derivatives.

7.2. Combustion application

This example is taken from Chen (2001), Aziz, Stephens and Suri (1988),
Barrett and Shanahan (1991) and Fowler and Kelley (2005). We globalize
the semi-smooth Newton iteration with ΨTC for a DAE. In the context of
Section 7.1, N1 = N2.

We consider the boundary value problem

−uzz + λmax(0, u)p = 0, z ∈ (0, 1) (7.11)

(Aziz et al. 1988, Barrett and Shanahan 1991), with boundary data

u(0) = u(1) = 0 (7.12)

and p ∈ (0, 1).

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492917000113
Downloaded from https://www.cambridge.org/core. North Carolina State University, on 30 May 2018 at 20:08:09, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492917000113
https://www.cambridge.org/core


276 C. T. Kelley

We reformulate the problem to make the forcing term Lipschitz continu-
ous by adding a new variable,

v =

{
up if u ≥ 0,

u if u < 0,

to obtain a Lipschitz continuous elliptic–algebraic system, F(w) = 0, where
w = (u, v)T and

F(w) =

(
f(u, v)
g(u, v)

)
=

(
−uzz + λmax(0, v)

u− ω(v)

)
= 0, (7.13)

where

ω(v) =

{
v1/p if v ≥ 0,

v if v < 0.

If we discretize the Laplacian with the standard central difference scheme
with N interior grid points, we obtain a finite-dimensional system F(w) = 0
for

w =

(
u
v

)
∈ R2N ,

where

F(w) =

(
F1(u,v)
F2(u,v)

)
=

(
−Lδzu

u− v −max(0,v)1/p

)
+

(
λ
1

)
max(0,v).

Here functions are understood to be componentwise evaluations, Lδz is the
discretized Laplacian, and δz is the spatial mesh width.

The reason we formulate the problem with DAE (rather than ODE) dy-
namics is that the pseudo-time variable should not be added to both equa-
tions in (7.13) but only the first. The reason for this is that the true time-
dependent system is

ut = uzz − λmax(0, u)p,

and that the auxiliary variable v is used only to make the nonlinearity
Lipschitz continuous. One might think that an ODE formulation would
work equally well, but in fact the ODE formulation, which does not model
the physics, failed to converge in our testing.

ΨTC for this problem, which is semi-smooth, looks like (7.10) with F′

replaced by V ∈ ∂F(w):

wn+1 = wn − (δ−1n D + V(wn))−1F(wn), (7.14)
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Figure 7.1. Solution to (7.11) and (7.12) via (7.14) for p = 0.1, λ = 200.

where D11 = I. One can compute ∂F analytically using the well-known
result for the scalar function max(0, v)

∂max(0, v) =


0 if v < 0,

[0, 1] if v = 0,

1 if v > 0.

Hence

∂F =

(
−Lδz 0

I −1− (1/p) max(0,V)(1−p)/p

)
+

(
0 λI
0 I

)
∂max(0,V).

(7.15)
Here max(0,F) and ∂max(0,V) denote the diagonal matrices with the
entries of the vector on the diagonal.

We report on one of the computations in Fowler and Kelley (2005) with
p = 0.1 and λ = 200. This choice leads to a large ‘dead core’ (Aziz et al.
1988, Barrett and Shanahan 1991), a region in which the solution vanishes.
We plot the solution in Figure 7.1.

In the continuation we could use any choice from the set-valued map
∂max(0, v), and selected

χ(v) =

{
0 if v ≤ 0

1 if v > 0

}
∈ ∂max(0, v).

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492917000113
Downloaded from https://www.cambridge.org/core. North Carolina State University, on 30 May 2018 at 20:08:09, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492917000113
https://www.cambridge.org/core


278 C. T. Kelley

0 2 4 6 8 10 12 14 16 18
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

function norm
step norm

δ

Figure 7.2. Residual history: semi-smooth ΨTC.

We used δ0 = 1 and δmax = 106. We terminate the nonlinear iteration
when either

‖F(wn)‖/‖F(w0)‖ < 10−13 or ‖sn‖ < 10−10, (7.16)

where sn = wn+1 − wn. In the tables we see the superlinear convergence
clearly in the reduction in the norms of the steps; this is consistent with
the estimate sn = −en + o(‖en‖) which follows from local superlinear con-
vergence. The superlinear convergence is less visible in the residual norms,
because the generalized Jacobians become more ill-conditioned as the mesh
is refined. The residual norms begin to stagnate after a reduction of 1012.

In Figure 7.2, taken from Fowler and Kelley (2005), we plot the norms
of the steps and nonlinear residuals together with the growth of δ for a
mesh of width δz = 1/2048. δ grows smoothly in the early phase of the
iteration and reaches its maximum rapidly. The superlinear convergence
is clearly visible in the curve for the norms of the steps. The Jacobian of
the nonlinear residual has a condition number of O(1/h2), and hence the
residual norm reflects the error less accurately.
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